中国神经再生研究(英文版) ›› 2018, Vol. 13 ›› Issue (7): 1231-1240.doi: 10.4103/1673-5374.235061

• 原著:脊髓损伤修复保护与再生 • 上一篇    下一篇

血小板衍生生长因子缓释微球脊髓修复支架材料:有利于细胞定向迁移和生长

  

  • 收稿日期:2018-04-15 出版日期:2018-07-15 发布日期:2018-07-15
  • 基金资助:

    国家自然科学基金(81501610,81350030);江苏省高等教育重点学科发展项目

A partition-type tubular scaffold loaded with PDGFreleasing microspheres for spinal cord repair facilitates the directional migration and growth of cells

Xue Chen1, 2, 3, Mei-Ling Xu2, Cheng-Niu Wang2, Lu-Zhong Zhang4, Ya-Hong Zhao4, Chang-Lai Zhu4, Ying Chen2, Jian Wu2, Yu-Min Yang4, Xiao-Dong Wang2   

  1. 1 School of Biology & Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China;
    2 Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China;
    3 Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China;
    4 Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
  • Received:2018-04-15 Online:2018-07-15 Published:2018-07-15
  • Contact: Xiao-Dong Wang, M.D.,wxdzw@ntu.edu.cn.
  • Supported by:

    This study was supported by the Natural Science Foundation of China, No. 81501610, 81350030; the Priority Academic Program Development of Jiangsu Higher Education Institutes of China.

摘要:

最佳的组织工程脊髓移植物不仅要匹配脊髓的结构特征,而且还能允许种子细胞持续在原位生长和发挥作用。已有研究指出血小板衍生生长因子(platelet-derived growth factor,PDGF)具有促进骨髓基质细胞迁移的作用,但是细胞因子在体内需要有一个持续稳定的浓度和作用过程,因此如何在较长时间内保持特定部位细胞因子的浓度,有效促进种子细胞的定位、增殖与分化则是一个新的需要探索的问题。为此,实验设计制作了一个与大鼠T8-10脊髓节段解剖学特征相匹配的壳聚糖分区式导管,然后将壳聚糖包封PDGF-BB构成的微球体固定其中。体外检测固定有PDGF微球体导管的缓释能力、生物相容性、以及对多系分化持续应激细胞诱导分化形成的神经前体细胞的影响,见在-20 ℃条件下预冷冻2 h后,分区式导管的成管率明显提高;30 μL的25%戊二醛可保证PDGF微球体的最佳交联;在体外4周,PDGF微球体中PDGF-BB累计释放52%,未发生突释现象;固定有PDGF微球体的分区式导管显示与人神经前体细胞生物相容性良好,并可以促进细胞的定向迁移和生长。上述数据表明,将分区式导管、PDGF微球体和神经前体细胞相结合,可以为组织工程脊髓移植物的制备提供一个有前景的微环境模式。

orcid:0000-0003-4813-6858(Xiao-Dong Wang)

关键词: 隔板型管状支架, 微球, 血小板衍生生长因子, 缪斯细胞, 神经前体细胞, 壳聚糖, 包封效率, 骨髓, 脊髓损伤, 组织工程

Abstract:

The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ. Platelet-derived growth factor (PDGF) has been shown to promote the migration of bone marrow stromal cells;however, cytokines need to be released at a steady rate to maintain a stable concentration in vivo. Therefore, new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization, proliferation and differentiation. In the present study, a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres (PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity, biocompatibility, and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells (MUSE-NPCs). We found that pre-freezing for 2 hours at −20°C significantly increased the yield of partition-type tubular scaffolds, and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs. The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells. These findings indicate that the combination of a partition-type tubular scaffold, PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.

Key words: nerve regeneration, partition-type tubular scaffold, microspheres, platelet-derived growth factor, muse cells, neural precursor cells, chitosan, encapsulation efficiency, bone marrow, spinal cord injury, tissue engineering, neural regeneration