中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (12): 2600-2605.doi: 10.4103/1673-5374.335838

• 综述:周围神经损伤修复保护与再生 • 上一篇    下一篇

基于脑电图的人机界面结合对侧C7移位修复臂丛神经损伤

  

  • 出版日期:2022-12-15 发布日期:2022-05-05
  • 基金资助:
    国家自然科学基金(31771322); 北京自然科学基金(7212121); 深圳市科技计划项目(JCYJ20190806162205278); 严重创伤标准化治疗基金(SZSM202011001);来自中国北京国家创伤医学中心项目(BMU2020XY005-01)

An electroencephalography-based human-machine interface combined with contralateral C7 transfer in the treatment of brachial plexus injury

Meng Zhang1, 2, 3, #, Ci Li1, 2, 3, #, Song-Yang Liu1, 2, 3, Feng-Shi Zhang1, 2, 3, Pei-Xun Zhang1, 2, 3, *   

  1. 1Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing, China; 2Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China; 3National Center for Trauma Medicine, Beijing, China
  • Online:2022-12-15 Published:2022-05-05
  • Contact: Pei-Xun Zhang, PhD, zhangpeixun@bjmu.edu.cn.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 31771322 (to PXZ); the Natural Science Foundation of Beijing, No. 7212121 (to PXZ); Shenzhen Science and Technology Plan Project, No. JCYJ20190806162205278 (to PXZ); Funds for Severe Trauma Standardized Treatment, No. SZSM202011001 (to PXZ); a grant from National Center for Trauma Medicine, Beijing, China, No. BMU2020XY005-01 (to PXZ). 

摘要:

对侧C7神经转移到正中神经或桡神经的修复方法已成为修复臂丛神经等严重周围神经损伤的重要手段,但单纯通过手术连接神经来修复周围神经损伤的效果并不十分满意。目前基于脑电图的人机界面在促进损伤后的神经功能恢复方面的应用取得了可喜的成果,如控制远端外骨骼进行张开、握拳、手腕外旋等动作,从而在神经损伤早期进行功能锻炼维持靶肌肉活性,促进神经康复效果。为此,文章通过总结基于脑电图的人机界面结合对侧C7移位修复臂丛神经损伤的研究进展发现:①臂丛神经损伤的神经移位有可能会造成供体区域神经功能缺失,因而只能选择对供体区影响较小的神经如C7神经进行移位修复;单一肌腱的移位不能完全恢复最佳的关节功能,因此常需要同时重建多种功能。②与传统人工康复相比,基于脑电图的人机界面有可能最大限度地发挥患者的主动性,促进损伤周围神经再生和皮质重塑,从而更好地促进神经功能恢复。③在臂丛神经损伤治疗的早期阶段,采用基于脑电图的人机界面结合对侧C7移位的修复方法,可充分利用大脑的计算能力,并借助外部机械辅助主动控制功能锻炼,极大地促进了术后神经功能的康复;从长远来看,它还可以防止肌肉和靶器官的废用性萎缩,并保持神经肌肉接头的有效性。④当对侧C7神经的断端连接和控制了损伤的远端神经时,促进大脑皮质重塑这一途径对神经功能恢复也特别重要。⑤未来还需深入研究早期运动延缓受损神经肌肉接头解体和促进皮质重塑的机制,这有助于为临床上臂丛神经损伤后的神经功能康复策略的制定提供新思路。

https://orcid.org/0000-0003-0929-6293 (Pei-Xun Zhang)

关键词: 外展神经, 手臂损伤, 臂丛神经, 脑-机接口, 神经移位, 神经再生, 神经组织, 神经反馈, 神经康复, 用户计算机界面

Abstract: Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury. However, outcomes have been disappointing. Electroencephalography (EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury, which maintains target muscle activity and promotes the neurological rehabilitation effect. This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury. Nerve transfer may result in loss of nerve function in the donor area, so only nerves with minimal impact on the donor area, such as the C7 nerve, should be selected as the donor. Single tendon transfer does not fully restore optimal joint function, so multiple functions often need to be reestablished simultaneously. Compared with traditional manual rehabilitation, EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling, which facilitates neurological recovery. In the early stages of brachial plexus injury treatment, the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery. It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness. Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer. Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling. Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.

Key words: arm injuries, brachial plexus, brain-computer interfaces, nerve transfer, nerve regeneration, nerve tissue, neurofeedback, neurological rehabilitation, user-computer interface