中国神经再生研究(英文版) ›› 2013, Vol. 8 ›› Issue (5): 389-396.doi: 10.3969/j.issn.1673-5374.2013.05.001
• 原著:脊髓损伤修复保护与再生 • 下一篇
收稿日期:
2012-09-25
修回日期:
2012-11-20
出版日期:
2013-02-15
发布日期:
2013-02-15
Yan Liu1, Ying Zhou1, Chunli Zhang1, Feng Zhang2, Shuxun Hou1, Hongbin Zhong1, Hongyun Huang2
Received:
2012-09-25
Revised:
2012-11-20
Online:
2013-02-15
Published:
2013-02-15
Contact:
Shuxun Hou, M.D., Professor, Chief physician, Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China,hshuxun@yahoo.com.cn.
About author:
Yan Liu☆, M.D., Attending physician.
Supported by:
This study was supported by the People’s Liberation Army Fund for Special Projects of Medical Sciences, No. 06G114.
摘要:
分别于大鼠脊髓钝挫伤即刻(急性期)、7d(亚急性期)及4周(慢性期)经蛛网膜下腔移植携带绿色荧光转基因的孕14d胚胎大鼠脑泡神经祖细胞,探讨移植的最佳时机。结果发现急性期移植的神经祖细胞可存活至少4周,细胞团多聚集在损伤区血管周围,并沿神经纤维间隙向损伤区脊髓实质内迁移,但亚急性期和慢性期移植者未观察到上述现象。神经祖细胞移植后8周,在慢性期移植的大鼠马尾区及损伤区可见移植的神经祖细胞附着,细胞团内部分细胞可表达星形胶质细胞标记物胶质纤维酸性蛋白及少突胶质细胞标记物O4,而急性期及亚急性期移植者未见。BBB评分结果显示急性期移植神经祖细胞在提高大鼠后肢运动功能方面较亚急性期和慢性期移植更显著。说明脊髓损伤急性期经蛛网膜下腔移植的神经祖细胞存活时间短,且未向星形胶质细胞或神经元分化,但移植细胞可到达脊髓损伤区实质,改善脊髓损伤大鼠的神经功能,效果优于亚急性期和慢性期。
. 蛛网膜下腔移植神经祖细胞修复脊髓钝挫伤的时间窗[J]. 中国神经再生研究(英文版), 2013, 8(5): 389-396.
Yan Liu, Ying Zhou, Chunli Zhang, Feng Zhang, Shuxun Hou, Hongbin Zhong, Hongyun Huang. Optimal time for subarachnoid transplantation of neural progenitor cells in the treatment of contusive spinal cord injury[J]. Neural Regeneration Research, 2013, 8(5): 389-396.
[1] Ohta M, Suzuki Y, Noda T, et al. Implantation of neural stem cells via cerebrospinal fluid into the injured root. Neuroreport. 2004;15(8):1249-1253. [2] Akiyama Y, Honmou O, Kato T, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol. 2001;167(1):27-39.[3] Chen L, Huang H, Xi H, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19(2):185-191. [4] Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1-2):1-10.[5] Araujo DM, Hilt DC. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease. Neuroscience. 1997;81(4):1099-1110.[6] Kim DS, Jung SJ, Nam TS, et al. Transplantation of GABAergic neurons from ESCs attenuates tactile hypersensitivity following spinal cord injury. Stem Cells. 2010;28(11):2099-2108.[7] Xu Y, Tian XB, An K, et al. Lumbar transplantation of immortalized enkephalin-expressing astrocytes attenuates chronic neuropathic pain. Eur J Pain. 2008;12(4):525-533. [8] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1-21. [9] Neuhuber B, Barshinger AL, Paul C, et al. Stem cell delivery by lumbar puncture as a therapeutic alternative to direct injection into injured spinal cord. J Neurosurg Spine. 2008; 9(4):390-399. [10] Ohta M, Suzuki Y, Noda T, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol. 2004;187(2):266-278. [11] Einstein O, Karussis D, Grigoriadis N, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003;24(4):1074-1082.[12] Mitsui T, Shumsky JS, Lepore AC, et al. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci. 2005;25(42):9624-9636. [13] Mothe AJ, Bozkurt G, Catapano J, et al. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord. 2011; 49(9):967-973. [14] Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429-441. [15] Bai H, Suzuki Y, Noda T, et al. Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods. 2003;124(2):181-187.[16] Hwang DH, Lee HJ, Park IH, et al. Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther. 2009;16(10):1234-1244.[17] Tran PB, Ren D, Veldhouse TJ, et al. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res. 2004;76(1):20-34. [18] Ben-Hur T, Ben-Menachem O, Furer V, et al. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24(3):623-631. [19] Forsberg-Nilsson K, Behar TN, Afrakhte M, et al. Platelet- derived growth factor induces chemotaxis of neuroepithelial stem cells. J Neurosci Res. 1998;53(5):521-530. [20] Bartholdi D, Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci. 1997;9(7):1422-1438. [21] Aarum J, Sandberg K, Haeberlein SL, et al. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A. 2003;100(26): 15983-15988. [22] Rauch MF, Hynes SR, Bertram J, et al. Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur J Neurosci. 2009;29(1):132-145. [23] Coyne TM, Marcus AJ, Reynolds K, et al. Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain. Transplantation. 2007;84(11):1507-1516. [24] Coyne TM, Marcus AJ, Woodbury D, et al. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells. 2006;24(11):2483-2492. [25] Xie ZW, Cui GX, Li YZ, et al. Curative effect of autologous mesenchymal stem cell transplantation on spinal cord injury. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2007;11(7):1277-1279.[26] Kishk NA, Gabr H, Hamdy S, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair. 2010;24(8):702-708. [27] Mehta T, Feroz A, Thakkar U, et al. Subarachnoid placement of stem cells in neurological disorders. Transplant Proc. 2008;40(4):1145-1147. [28] Sun JH, Zheng PH, Wang LL, et al. Survival and differentiation of neuroepithelial stem cells following transplantation into the lateral ventricle of rats. Chin J Physiol. 2008;51(4):247-251. [29] Mothe AJ, Kulbatski I, Parr A, et al. Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant. 2008;17(7):735-751. [30] Sandner B, Prang P, Rivera FJ, et al. Neural stem cells for spinal cord repair. Cell Tissue Res. In press. [31] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[32] McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5(12): 1410-1412. |
[1] | . 神经基质膜包裹周围神经损伤的安全和有效性:一项随机单盲多中心临床试验[J]. 中国神经再生研究(英文版), 2021, 16(8): 1652-1659. |
[2] | . 质谱法鉴定红细胞中潜在的脊髓损伤氧化应激生物标志物[J]. 中国神经再生研究(英文版), 2021, 16(7): 1294-1301. |
[3] | . 体感和运动诱发电位可反映单侧颈部脊髓挫伤后粗大和精细运动的功能[J]. 中国神经再生研究(英文版), 2021, 16(7): 1323-1330. |
[4] | . 外源性血小板衍生生长因子恢复脊髓损伤后的神经血管单元[J]. 中国神经再生研究(英文版), 2021, 16(4): 757-763. |
[5] | . 硬膜外电刺激结合离体三基因疗法治疗脊髓损伤[J]. 中国神经再生研究(英文版), 2021, 16(3): 550-560. |
[6] | . 完全性脊髓损伤会导致运动功能核心区域的迁移[J]. 中国神经再生研究(英文版), 2021, 16(3): 567-572. |
[7] | . 山楂叶总黄酮可抑制脊髓损伤后的细胞凋亡并促进运动功能恢复[J]. 中国神经再生研究(英文版), 2021, 16(2): 350-356. |
[8] | . 基因修饰白细胞浓缩液用于中度脊髓损伤小型猪模型的个性化离体基因治疗[J]. 中国神经再生研究(英文版), 2021, 16(2): 357-361. |
[9] | . 脊髓损伤小鼠系统性免疫反应的动态变化[J]. 中国神经再生研究(英文版), 2021, 16(2): 382-387. |
[10] | . CXCR7中和抗体对脑缺血慢性期海马齿状回神经再生认知功能的影响[J]. 中国神经再生研究(英文版), 2020, 15(6): 1079-1085. |
[11] | . 脊髓损伤模型小鼠MicroRNA-21-5p的比较蛋白质组学变化及在不同途径中的可能作用[J]. 中国神经再生研究(英文版), 2020, 15(6): 1102-1110. |
[12] | . 调节自噬对脊髓损伤治疗效果的影响:直接和间接比较的网络meta分析[J]. 中国神经再生研究(英文版), 2020, 15(6): 1120-1132. |
[13] | . 追踪神经再生轴突时程分析体内感觉轴突的再生[J]. 中国神经再生研究(英文版), 2020, 15(6): 1160-1165. |
[14] | . 幼年氯胺酮暴露诱导大脑海马神经元凋亡可影响成年空间学习能力[J]. 中国神经再生研究(英文版), 2020, 15(5): 880-886. |
[15] | . 血清胱抑素C水平与缺血性脑卒中后认知功能障碍呈负相关[J]. 中国神经再生研究(英文版), 2020, 15(5): 922-928. |
Design
A randomized, controlled animal experiment.
Time and setting
Experiments were performed in the First Affiliated Hospital of General Hospital of Chinese PLA from March 2008 to September 2011.
Materials
Embryonic (14 ± 0.5 days old) transgenic donor Sprague-Dawley rats (SOD G
Methods
Neural progenitor cell culture
Neural progenitor cells were isolated from embryonic cerebral vesicles of transgenic donor rats (outbred Sprague-Dawley) expressing green fluorescence protein (RRRC #65). Briefly, embryos were isolated in a dish containing Dulbecco’s modified Eagle’s medium/F12 (Sigma,
The neural progenitor cell population was dissociated from culture plates using 0.05% trypsin/ ethylenediaminetetraacetic acid, washed and re-suspended at a concentration of 4 × 106 cells (in Dulbecco’s modified Eagle’s medium/F12) for transplantation. Cells were placed on ice throughout the grafting process. Before completion of the grafting procedure, cell viability was assessed using the trypan blue assay[29]. The phenotype of neural progenitor cells was verified before grafting by staining for nestin and stem cell marker A2B5 (A2B5 for neural progenitor cells), neuronal nuclei (for mature neurons), glial fibrillary acidic protein (for astrocytes) and O4 (for oligodendrocytes)[29].
Establishment of thoracic spinal cord injury model
A laminectomy was performed at the T9-10 region under pentobarbital sodium (40 mg/kg) anesthesia. The rod of the impactor (
Cell transplantation
Neural progenitor cells were injected into the lumbar subarachnoid space at the corresponding time point. Under sodium pentobarbital (40 mg/kg) anesthesia, a
Immunohistochemical and immunofluorescent staining
Animals were deeply anesthetized with pentobarbital sodium. Rats were sacrificed by transaortic perfusion with 100 mL of
Basso, Beattie and Bresnahan scale score
Hind limb locomotor activity of the animals in each group (10 rats/group) was assessed by two blinded examiners using the Basso, Beattie and Bresnahan scoring scale[8] once a week for 12 weeks after injury. Assessments were conducted 1 hour after bladder evacuation every Monday morning.
Statistical analysis
SPSS 13.0 software(SPSS,
1 Neural progenitor cells transplanted via the subarachnoid space at the acute, subacute and chronic stages following spinal cord injury could survive and improve neurological function in injured rats. 2 Grafted neural progenitor cells migrated and aggregated around blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces after acute stage transplantation. 3 Grafted neural progenitor cells survived long term (8 weeks) and differentiated into astrocytes or oligodendrocytes after chronic stage transplantation. 4 Grafted neural progenitor cells localized to the parenchyma of injured spinal cords and improved neurological function at the acute stage following injury in rats. Efficacy was enhanced in comparison with transplantation at subacute and chronic stages. 1 脊髓损伤急性、亚急性及慢性期经蛛网膜下腔移植的神经祖细胞均可存活,并可改善脊髓损伤大鼠的神经功能。 2 脊髓损伤急性期经蛛网膜下腔移植的神经祖细胞多聚集在损伤区血管周围,并沿神经纤维间隙向损伤区脊髓实质内迁移。 3 脊髓损伤慢性期经蛛网膜下腔移植的神经祖细胞存活时间长,且可向胶质细胞或少突胶质细胞分化。 4 脊髓损伤急性期移植的祖细胞细胞可到达脊髓损伤区实质,在改善脊髓损伤大鼠的神经功能方面优于亚急性期和慢性期。
1 实验设计构思介绍
近几十年,脊髓损伤后促进中枢神经再生修复及功能康复的研究较多,多是以细胞移植为背景,尤其是干细胞移植治疗中枢神经系统疾病及损伤已成为热点,其中神经祖细胞移植有利于损伤的神经组织修复。神经祖细胞具有较高的神经细胞分化潜能,但多数研究是将细胞移植入损伤区,该途径是比较有效的方法。但是在临床应用中,这种方法具有侵袭性,常需要开放性手术治疗,费用也较高,存在进一步损伤脊髓的风险且不易被患者接受。蛛网膜下腔神经干细胞移植治疗脊髓损伤实验研究报道具有一定疗效,临床应用也有报道,但疗效不确定,是否移植时机对治疗效果有影响,因此进行该途径移植神经祖细胞的时间窗研究。
2 国内外同类研究水平的介绍
国内外研究多为实验研究,发现移植的神经祖细胞可以向脊髓损伤区迁移,且可以分化为成熟的神经元或神经胶质细胞,可以促进实验动物脊髓神经功能恢复,也对移植细胞种类进行了研究,临床研究多为亚急性期细胞移植的临床观察,只是得出安全的结论,有效性尚存争议。但是针对最佳移植时间窗的研究尚未见报道。
3 与其他同类研究的比较
课题组在脊髓损伤后不同时期(急性期、亚急性期及慢性期)进行细胞移植治疗脊髓损伤,首先观察移植细胞是否可以进入损伤区脊髓实质,因为只有移植细胞进入脊髓实质内才能发挥作用,其次观察移植细胞的分布及分化特点,实验在其他同类研究的基础上进一步探讨该方法的时限性,精细探讨经蛛网膜下腔移植神经祖细胞治疗脊髓损伤的适用范围,提高临床疗效,从而为临床应用提供实验数据。
4 文章先进性
PubMed(Medline)检索时间1977—2012年3月、EMBASE数据库(1977—2012年3月)、中国生物医学文献数据库(1984年2012~3月),手工检索相关杂志。检索词:spinal cord injury;subarachnoid space;cell transplantation;neural progenitor cells;neural stem cell; lumbar puncture;脊髓损伤;蛛网膜下腔;细胞移植;神经干细胞;神经祖细胞;腰椎穿次。共检索相关文献123篇,最终选定62篇,综述成文《经蛛网膜下腔细胞移植治疗脊髓损伤的研究进展》,在《中国脊柱脊髓杂志》发表。
5 专家意见与答疑
专家意见1:材料与方法部分出现了NF的说明,但结果中没有,建议补充说明。
作者答疑:已经补充。NF主要标记宿主神经轴突(神经纤维)目的是观察移植细胞与宿主脊髓白质相对位置关系,本研究未作轴突再生方面的观察,只是探寻蛛网膜下腔细胞移植,神经祖细胞迁入脊髓损伤区实质内的最佳时间窗,因为只有移植细胞进入脊髓实质内才具有促进再生及神经功能修复的物质基础,具体促进脊髓神经功能修复机制是细胞替代、促进轴突再生、促进再髓鞘化还是作为中转重建神经环路等问题是我们的下一步研究计划,故NF在本文中未做重点描述。
专家意见2:本文最主要的结果是急性期移植细胞可迁移至脊髓损伤部位实质中,促进模型动物BBB评分改善,但移植细胞缺乏分化为胶质细胞或神经元的证据,那么,其促进BBB评分提高的依据可能是什么呢?建议结合文献适当补充。
作者答疑:已经补充下述讨论内容:没有观察到神经祖细胞的分化证据,可能的原因(1)细胞移植入蛛网膜下腔的时间较短;(2)急性期局部炎症反应显著,可能炎性因子对神经祖细胞的分化具有抑制作用;(3)炎症反应旺盛期巨噬细胞大量迁入,导致移植的异种神经祖细胞被吞噬,使得短时间内神经祖细胞细胞数量急剧减少,从而分化表达较弱,不易观察。BBB评分提高可能的机制:(1)移植的神经祖细胞进入脊髓实质内可提供轴突附着基质,有助于轴突生长;(2)分泌神经营养因子改善局部微环境,减轻继发性损伤,促进轴突发芽再生从而保留更多的脊髓神经功能;(3)少量神经祖细胞可分化为胶质细胞或神经元,使得脱髓鞘轴突再髓鞘化或作为中转神经元重建神经环路,从而促进神经功能修复。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||