中国神经再生研究(英文版) ›› 2015, Vol. 10 ›› Issue (3): 404-411.doi: 10.4103/1673-5374.153688

• 原著:脊髓损伤修复保护与再生 • 上一篇    下一篇

“可视”的骨髓间充质干细胞移植修复脊髓损伤

  

  • 收稿日期:2015-01-08 出版日期:2015-03-20 发布日期:2015-03-20

Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

Rui-ping Zhang 1, 2, Cheng Xu 3, Yin Liu 1, Jian-ding Li 1, Jun Xie 4   

  1. 1 Department of Radiology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, China
    2 Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
    3 Department of Radiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, China
    4 Department of Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
  • Received:2015-01-08 Online:2015-03-20 Published:2015-03-20
  • Contact: Jun Xie, Ph.D., 1900547207@qq.com
  • Supported by:

    This research was supported by the National Natural Science Foundation of China, No. 81371628 and the Postdoctoral Science Foundation of China, No. 2014T70233, 2013M541206 and the Innovation Foundation of Shanxi Medical University First Hospital of China. 

摘要:

增加脊髓损伤区域移植细胞的数量是脊髓损伤的功能恢复改善的关键。实验首先以重物撞击损伤大鼠T7-8脊髓建立脊髓挫伤模型,再通过蛛网膜下腔注射超顺磁性氧化铁标记的骨髓间充质干细胞到损伤脊髓中,然后利用外部磁场成功地引导了超顺磁性氧化铁标记的骨髓间充质干细胞到脊髓损伤区域。与未进行外部磁场引导或注射未使用超顺磁性氧化铁标记的骨髓间充质干细胞的大鼠相比,普鲁士蓝染色结果发现有更多的骨髓间充质干细胞大鼠脊髓损伤区域;免疫荧光染色显示,脊髓损伤部位轴突更为完整;且大鼠后肢功能评分更高。说明超顺磁性氧化铁纳米颗粒可以有效地标记骨髓间充质干细胞,并赋予足够的磁力进行外加磁场导引细胞移动,且更重要的是,超顺磁性氧化铁标记的骨髓间充质干细胞在移植后也可以被MRI活体、动态的示踪。利用磁性引导细胞方法进行超顺磁性氧化铁标记的骨髓间充质干细胞移植有望用于脊髓损伤的治疗。

关键词: 神经再生, 超顺磁性氧化铁, 磁性引导, 骨髓间充质干细胞, 脊髓损伤, 磁共振成像, 腰椎穿刺, 细胞移植

Abstract:

An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

Key words: nerve regeneration, superparamagnetic iron oxide, magnetic guidance, bone marrow mesenchymal stem cells, spinal cord injury, cell transplantation, magnetic resonance image, lumbar puncture, neural regeneration