中国神经再生研究(英文版) ›› 2018, Vol. 13 ›› Issue (6): 1026-1035.doi: 10.4103/1673-5374.233446

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

神经元网络电兴奋性影响因素定量评估:新的电压阈值测量法

  

  • 收稿日期:2018-05-12 出版日期:2018-06-15 发布日期:2018-06-15
  • 基金资助:

    国家自然科学基金资助(61534003,61076118);2016-2018年中国科技部国家重点实验室创新基金;教育部儿童发展与学习重点实验室开放项目赠款(No.CDLS 201205)

Quantitative evaluation of extrinsic factors influencing electrical excitability in neuronal networks: Voltage Threshold Measurement Method (VTMM)

Shuai An1, Yong-Fang Zhao1, Xiao-Ying Lü1, 3, Zhi-Gong Wang2, 3   

  1. 1 State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
    2 Institute of RF- & OE-ICs, Southeast University, Nanjing, Jiangsu Province, China
    3 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
  • Received:2018-05-12 Online:2018-06-15 Published:2018-06-15
  • Contact: Xiao-Ying Lü, Ph.D. or Zhi-Gong Wang, Ph.D.,luxy@seu.edu.cn or zgwang@seu.edu.cn.
  • Supported by:

    This study was supported by the National Natural Sciences Foundation of China, No. 61534003, 61076118; the Innovation Foundation for State Key Laboratory of the Ministry of Science and Technology, China, No. 2016-2018; a grant from the Open Projects of Key Laboratory of Child Development and Learning of the Ministry of Education of China, No. CDLS201205.

摘要:

作为动物和人体内信息产生、处理、传输和执行功能的载体,神经网络的电兴奋性受各种环境因素影响。因此有必要建立一种简单而有效的测试方法,对诸如温度变化和药物剂量等不同因素对神经网络电兴奋性的影响进行客观而定量地评价。文章介绍了一种基于微电极阵列、能够定量评价不同因素对神经网络电兴奋性影响的新方法—电压阈值测量法,并通过研究乙酰胆碱、乙醇和温度(T)3种因素分别对海马神经元网络和海马区脑切片的影响,验证了此方法的可行性。首先,确定恰好能够诱发两种神经网络在正常状态下产生动作电位的刺激脉冲信号的电压幅值作为其正常电压阈值(VTh_N);然后,测量出两种神经网络在不同浓度的乙酰胆碱和乙醇和不同高低的T作用下的电压阈值(VTh);最后,得到VTh变化与3种影响因素作用的关系曲线。结果表明:海马神经元网络和海马区脑切片的VTh_N分别为56和31 mV;两种神经网络的VTh均与CACh成反比;两种神经网络的VTh随乙醇浓度(CEtOH)变化呈指数关系;两种神经网络的VTh-Tm曲线都呈U形,当Tm分别低于34°C和33 °C,或者超过42°C和43°C时,两种神经网络均不能诱发出动作电位。上述数据证实,电压阈值测量法是一种能够准确定量而又简便高效评价神经网络电兴奋性的新方法。

orcid:0000-0002-3777-2472(Xiao-Ying Lü)
        0000-0002-9203-4683(Zhi-Gong Wang)

关键词: 阈值电压, 微电极阵列, 神经网络的电兴奋性, 乙酰胆碱, 酒精, 温度, 海马神经元网络, 海马切片, 电刺激, 动作电位, 神经再生

Abstract:

The electrical excitability of neural networks is influenced by different environmental factors. Effective and simple methods are required to objectively and quantitatively evaluate the influence of such factors, including variations in temperature and pharmaceutical dosage. The aim of this paper was to introduce ‘the voltage threshold measurement method’, which is a new method using microelectrode arrays that can quantitatively evaluate the influence of different factors on the electrical excitability of neural networks. We sought to verify the feasibility and efficacy of the method by studying the effects of acetylcholine, ethanol, and temperature on hippocampal neuronal networks and hippocampal brain slices. First, we determined the voltage of the stimulation pulse signal that elicited action potentials in the two types of neural networks under normal conditions. Second, we obtained the voltage thresholds for the two types of neural networks under different concentrations of acetylcholine, ethanol, and different temperatures. Finally, we obtained the relationship between voltage threshold and the three influential factors. Our results indicated that the normal voltage thresholds of the hippocampal neuronal network and hippocampal slice preparation were 56 and 31 mV, respectively. The voltage thresholds of the two types of neural networks were inversely proportional to acetylcholine concentration, and had an exponential dependency on ethanol concentration. The curves of the voltage threshold and the temperature of the medium for the two types of neural networks were U-shaped. The hippocampal neuronal network and hippocampal slice preparations lost their excitability when the temperature of the medium decreased below 34 and 33°C or increased above 42 and 43°C, respectively. These results demonstrate that the voltage threshold measurement method is effective and simple for examining the performance/excitability of neuronal networks.

Key words: nerve regeneration, threshold voltage, microelectrode array, electrical excitability of neural networks, acetylcholine, alcohol, temperature, hippocampal neuronal network, hippocampal slice, electrical stimulation, action potentials, neural regeneration