中国神经再生研究(英文版) ›› 2019, Vol. 14 ›› Issue (2): 289-297.doi: 10.4103/1673-5374.244794

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

糖尿病相关抑郁状态下海马神经血管单元结构和功能的损害

  

  • 出版日期:2019-02-15 发布日期:2019-02-15
  • 基金资助:

    中国国家自然科学基金项目(81373578,81573965)湖南省自然科学基金项目(2017JJ3241),湖南省教育厅科研基金项目(17C1229)

Structural and functional damage to the hippocampal neurovascular unit in diabetes-related depression

Jian Liu 1 , Yu-Hong Wang 2 , Wei Li 1 , Lin Liu 1 , Hui Yang 1 , Pan Meng 2 , Yuan-Shan Han 1   

  1. 1 First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
    2 Hunan University of Chinese Medicine, Changsha, Hunan Province, China
  • Online:2019-02-15 Published:2019-02-15
  • Contact: Yu-Hong Wang, wyh_107@163.com.
  • Supported by:

    This study was supported by the National Natural Science Foundation of China, No. 81373578 (to YHW), 81573965 (to YHW); the Natural Science Foundation of Hunan Province of China, No. 2017JJ3241 (to JL); the Education Department Scientific Research Foundation of Hunan Province of China, No. 17C1229 (to JL).

摘要:

有研究发现糖尿病修复抑郁模型海马神经血管单元有结构和功能的损伤,故作者推测糖尿病相关抑郁可能与海马神经血管单元有相关性。为验证这一假设,实验设计从小鼠胚胎和新生小鼠脑组织中分离神经元、星形胶质细胞和内皮细胞,利用Transwell小室共培养构建海马神经血管单元共培养系统,通过在培养体系中加入150mmol/L高血糖和200μmol/L皮质酮模拟糖尿病相关抑郁模型,同时与神经元+星形胶质细胞和星形胶质细胞+内皮细胞共培养系统作对照。以免疫组化染色检测海马神经血管单元共培养系统中结构蛋白的阳性反应,以ELISA测量海马神经血管单元共培养系统中碱性成纤维细胞生长因子、血管生成因子1、胶质细胞源性神经营养因子、转化生长因子β1、白血病抑制因子及5-羟色胺的水平,以流式细胞术和Tunel染色检测海马神经血管单元中神经元的凋亡情况。发现海马神经血管单元共培养系统在屏障功能、结构和分泌功能方面比神经元+星形胶质细胞和星形胶质细胞+内皮细胞共培养系统更为稳定。在模拟糖尿病相关抑郁条件下,海马神经血管单元共培养系统屏障功能下降,结构完整性和分泌功能降低,神经元凋亡增加,5-羟色胺水平降低。提示糖尿病相关抑郁造成了海马神经血管单元结构和功能的损伤,这为研究糖尿病相关抑郁发病机制提供了一个新的思路。

orcid: 0000-0002-8019-8226 (Jian Liu)

关键词: 海马, 神经血管单位, 神经元, 星形胶质细胞, 脑微血管细胞, 细胞培养, 共培养, 糖尿病相关抑郁, 高血糖, 皮质酮

Abstract:

Previous studies have shown that models of depression exhibit structural and functional changes to the neurovascular unit. Thus, we hypothesized that diabetes-related depression might be associated with damage to the hippocampal neurovascular unit. To test this hypothesis, neurons, astrocytes and endothelial cells were isolated from the brain tissues of rat embryos and newborn rats. Hippocampal neurovascular unit co-cultures were produced using the Transwell chamber co-culture system. A model of diabetes-related depression was generated by adding 150 mM glucose and 200 μM corticosterone to the culture system and compared with the neuron + astrocyte and astrocyte + endothelial cell co-culture systems. Western blot assay was used to measure levels of structural proteins in the hippocampal neurovascular unit co-culture system. Levels of basic fibroblast growth factor, angiogenic factor 1, glial cell line–derived neurotrophic factor, transforming growth factor β1, leukemia inhibitory factor and 5-hydroxytryptamine in the hippocampal neurovascular unit co-culture system were measured by enzyme-linked immunosorbent assay. Flow cytometry and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining was used to assess neuronal apoptosis in the hippocampal neurovascular unit. The neurovascular unit triple cell co-culture system had better barrier function and higher levels of structural and secretory proteins than the double cell co-culture systems. In comparison, in the model of diabetes-related depression, the neurovascular unit was damaged with decreased barrier function, poor structural integrity and impaired secretory function. Moreover, neuronal apoptosis was markedly increased, and 5-hydroxytryptamine levels were reduced. These results suggest that diabetes-related depression is associated with structural and functional damage to the neurovascular unit. Our findings provide a foundation for further studies on the pathogenesis of diabetes-related depression.

Key words: nerve regeneration, hippocampus, neurovascular unit, neurons, astrocytes, brain microvascular cells, cell culture, co-culture, diabetes-related depression, hyperglycemia, corticosterone, neural regeneration