中国神经再生研究(英文版) ›› 2025, Vol. 20 ›› Issue (10): 3025-3039.doi: 10.4103/NRR.NRR-D-23-01879

• 原著:神经损伤修复保护与再生 • 上一篇    下一篇

抑制NLRP3炎症小体可减轻氨基糖苷类诱导听力损失中耳蜗螺旋神经元的变性

  

  • 出版日期:2025-10-15 发布日期:2025-02-09

Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss

Jia Fang1, 2, #, Zhuangzhuang Li1, #, Pengjun Wang1, #, Xiaoxu Zhang1 , Song Mao1 , Yini Li1 , Dongzhen Yu1 , Xiaoyan Li2 , Yazhi Xing1, *, Haibo Shi1 , Shankai Yin1   

  1. 1 Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China;  2 Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
  • Online:2025-10-15 Published:2025-02-09
  • Contact: Yazhi Xing, MD, PhD, yazhi_0807@hotmail.com or dorothy1801@sjtu.edu.cn.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, Nos. 81800919 (to YX), 82171140 (to PW) and the International Cooperation and Exchange of the National Natural Science Foundation of China, Nos. 82020108008 (to HS), 81720108010 (to SY).

摘要:

氨基糖苷类抗生素是一类广泛使用的抗菌药物,以其疗效和广泛的抗菌谱而闻名;然而在氨基糖苷类药物可造成听功能的不可逆损伤中,除毛细胞作为直接靶细胞发生凋亡外,螺旋神经元亦在经受氨基糖苷类药物处理后经历了不同的损伤/修复阶段。为探索氨基糖苷类药物诱导的耳毒性中螺旋神经元变性的机制,实验以氨基糖苷类药物卡那霉素诱导C57BL/6J小鼠耳蜗螺旋神经元变性,可见小鼠耳蜗外毛细胞急性丢失后,出现了听觉障碍。值得注意的是,卡那霉素诱导后螺旋神经元中可见细胞焦亡,且细胞焦亡存在进行性加重。进一步转录组学分析显示,螺旋神经元中炎症和免疫反应相关基因(包括NLRP3炎症小体的成分)显著上调。在螺旋神经元中还可见经典细胞焦亡通路显著激活,且伴随着小胶质细胞样细胞/巨噬细胞的浸润和促炎细胞因子的释放。最后以小分子化合物Mcc950或基因敲除抑制NLRP3,均可见卡那霉素诱导听力损伤小鼠螺旋神经元退行性变明显减轻以及听功能显著改善。因此,NLRP3炎症小体介导的细胞焦亡在氨基糖苷类诱导的螺旋神经元变性中起着重要的作用,抑制该通路可通过减少螺旋神经元变性来治疗感音神经性耳聋。

https://orcid.org/0000-0001-8975-7242 (Yazhi Xing)

关键词: 神经炎症,  细胞焦亡,  NLRP3炎症小体,  巨噬细胞,  听力损失,  螺旋神经元,  感觉神经性听力损失,  Mcc950,  变性,  耳毒性

Abstract: Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum. However, their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target. In addition, the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure. To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides, we used a C57BL/6J mouse model treated with kanamycin. We found that the mice exhibited auditory deficits following the acute loss of outer hair cells. Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time. Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response, particularly those related to the NLRP3 inflammasome. Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed, accompanied by infiltration of macrophages and the release of proinflammatory cytokines. Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model. These findings suggest that NLRP3 inflammasome–mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration. Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.

Key words: degeneration,  hearing loss,  macrophages,  Mcc950,  neuroinflammation,  NLRP3 inflammasome,  ototoxicity,  pyroptosis,  sensorineural hearing loss,  spiral ganglion neuron