中国神经再生研究(英文版) ›› 2026, Vol. 21 ›› Issue (3): 1142-1150.doi: 10.4103/NRR.NRR-D-24-00783

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

置异物对器官型培养物海马造成的损伤导致新生颗粒细胞可塑性反应

  

  • 出版日期:2026-03-15 发布日期:2025-07-05

Hippocampal damage through foreign body placement in organotypic cultures leads to plastic responses in newly born granule cells

Tassilo Jungenitz1 , Lukas Frey1 , Sophia Kirscht1 , Stephan W. Schwarzacher1 , Angélica Zepeda1, 2, *   

  1. 1 Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, Frankfurt am Main, Germany;  2 Departamento de Medicina Genómica y Toxicológica Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
  • Online:2026-03-15 Published:2025-07-05
  • Contact: Angelica Zepeda, azepeda@iibiomedicas.unam.mx.
  • Supported by:
    AZ was funded by the Alexander von Humboldt Stiftung. This work was supported by DFG (SCHW534/6-1 to SWS).

摘要:

海马齿状回是一种可塑性结构,在对积极刺激和消极条件(如脑损伤)做出反应时会出现不同程度的改变。后者涉及整体性改变,因此很难理解局部损伤引发的可塑性反应。齿状回的一个关键特征是它包含一个定义明确的神经源龛颗粒下层,除了神经发生外,新生颗粒细胞可能终生保持“年轻”表型,从而增加了该结构的可塑性。实验建立一种新实验模型,即在器官型海马培养物造成局部脑损伤,从而激活邻近的新生颗粒细胞。在齿状回颗粒细胞层(GCL)表面放置一小块滤纸,诱发星形胶质细胞的异物反应,同时激活表达双皮质素(DCX)的局部年轻神经元。异物放置(FBP)48h后,异物直接附近的颗粒下层中双皮质素免疫反应细胞数量增加,而在齿状回颗粒细胞层和分子层中观察到标记物双皮质素免疫反应性整体增加。CA1 区锥体层中的异物放置引起了类似的局部星形胶质细胞反应,但并未导致CA1 区或邻近齿状回中双皮质素免疫反应的增加。在齿状回中使用异物放置7d后,双皮质素免疫反应不再增加,这表明年轻细胞被短暂激活。然而,异物放置7d后,双皮质素/钙结合蛋白免疫反应颗粒细胞数量低于对照组。由于钙结合蛋白是成熟颗粒细胞的标志物,这一结果表明异物放置后激活的幼细胞仍处于更不成熟的阶段。逆转录绿色荧光蛋白标记的新生颗粒细胞的实时成像显示了它们的树突朝向异物放置的方向和生长情况。这种新型的器官型海马培养物异物放置实验模型可作为研究神经胶质细胞反应性和神经元可塑性的重要工具,特别是在可控体外条件下研究新生神经元的可塑性。

https://orcid.org/0000-0002-9820-302X (Angelica Zepeda)

关键词: 脑可塑性, 树突可塑性, 局灶性脑损伤, 神经可塑性, 再生, 神经修复, 新生颗粒细胞, 海马, 齿状回, 星形胶质细胞

Abstract: The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage. The latter involves global alterations, making understanding plastic responses triggered by local damage difficult. One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche, the subgranular zone, and beyond neurogenesis, newly born granule cells may maintain a “young” phenotype throughout life, adding to the plastic nature of the structure. Here, we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells. A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus, which evoked a foreign body reaction of astrocytes, along with the activation of local young neurons expressing doublecortin. Forty-eight hours after foreign body placement, the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body, whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus. Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus. Seven days after foreign body placement in the dentate gyrus, the increase in doublecortin-immunoreactivity was no longer observed, indicating the transient activation of young cells. However, 7 days after foreign body placement, the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions. As calbindin is a marker for mature granule cells, this result suggests that activated young cells remain at a more immature stage following foreign body placement. Live imaging of retrovirally green fluorescent protein–labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement. This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity, specifically of newly born neurons under controlled in vitro conditions.

Key words: astrocyte, brain plasticity, dendritic plasticity, dentate gyrus, focal brain injury, hippocampus, neuroplasticity, neurorepair, newborn granule cells, regeneration, reorganization