中国神经再生研究(英文版) ›› 2015, Vol. 10 ›› Issue (6): 965-971.doi: 10.4103/1673-5374.158362

• 原著:周围神经损伤修复保护与再生 • 上一篇    下一篇

复合骨髓间充质干细胞、细胞外基质的生物导管移植修复长段坐骨神经缺损

  

  • 收稿日期:2015-05-04 出版日期:2015-06-18 发布日期:2015-06-18
  • 基金资助:

    吉林省科技发展计划资助项目(20110492)

Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

Yang Wang 1, Zheng-wei Li 2, Min Luo 1, Ya-jun Li 3, Ke-qiang Zhang 2   

  1. 1 Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, Jilin Province, China
    2 Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
    3 Mathematics School, Jilin University, Changchun, Jilin Province, China
  • Received:2015-05-04 Online:2015-06-18 Published:2015-06-18
  • Contact: Ke-qiang Zhang, M.D., lyj@jlu.edu.cn
  • Supported by:

    This study was supported by the Science and Technology Development Program of Jilin Province in China, No. 20110492.

摘要:

近年来以聚乳酸聚乙醇酸共聚物(polylactic glycolic acid,PLGA)导管+骨髓间充质干细胞+细胞外基质凝胶联合移植修复坐骨神经损伤已取得了一定的效果,但相关的坐骨神经生物力学指标的对比分析罕见报道。实验制备兔坐骨神经10 mm缺损模型兔,分别以自体神经、PLGA导管+骨髓间充质干细胞、PLGA导管+骨髓间充质干细胞+细胞外基质凝胶修复。24周后检测应力松弛及蠕变情况见,坐骨神经损伤后各组试样7 200 s应力下降量和7 200 s应变上升量的变化趋势为:PLGA导管+骨髓间充质干细胞+细胞外基质修复组>PLGA导管+骨髓间充质干细胞修复组>自体神经修复组。苏木精-伊红染色发现,与其他2组比较,PLGA导管+骨髓间充质干细胞+细胞外基质修复组坐骨神经再生完全,髓鞘化良好,神经纤维排列整齐规则,导管完全被降解吸收。结果证实,复合骨髓间充质干细胞与细胞外基质PLGA导管桥接修复坐骨神经10 cm缺损时,在恒定张应变作用下的应力松弛量较大有利于减轻神经吻合口的张力,在恒定的生理载荷作用下伸长量较大可以限制神经吻合口的张开和移位,有利于坐骨神经的再生和功能重建,效果优于PLGA导管复合骨髓间充质干细胞移植和单独自体神经移植。

关键词: 神经再生, 周围神经损伤, 家兔, 坐骨神经损伤模型, 自体神经修复, PLGA导管, 细胞外基质凝胶, 移植, 应力松弛, 蠕变, 黏弹性, 组织形态, 电生理

Abstract:

The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.

Key words: nerve regeneration, peripheral nerve injury, rabbits, sciatic nerve injury, autologous nerve repair, polylactic glycolic acid conduit, extracellular matrix gel, grafting, stress relaxation, creep, viscoelasticity, histomorphology, electrophysiology, neural regeneration