中国神经再生研究(英文版) ›› 2020, Vol. 15 ›› Issue (6): 1071-1078.doi: 10.4103/1673-5374.269029

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

外生内皮细胞形成功能性脑屏障并恢复其完整性

  

  • 出版日期:2020-06-15 发布日期:2020-07-02

Outgrowth endothelial cells form a functional cerebral barrier and restore its integrity afer damage

Rais Reskiawan Abdulkadir, Mansour Alwjwaj, Othman Ahmad Othman, Kamini Rakkar, Ulvi Bayraktutan   

  1. Stroke, Division of Clinical Neuroscience, Clinical Sciences Building, School of Medicine, Hucknall Road, Nottingham, NG5 1PB, UK
      
  • Online:2020-06-15 Published:2020-07-02
  • Contact: Ulvi Bayraktutan, PhD, ulvi.bayraktutan@nottingham.ac.uk.
  • Supported by:
    Part of this study has been supported by a grant to Dr Bayraktutan from Te Dunhill Medical Trust (R459/0216).

摘要:

由脑微血管内皮细胞形成的血脑屏障破坏是缺血性卒中早期死亡的主要原因。内皮祖细胞能够有效替代死亡或垂死的内皮细胞以恢复血脑屏障的完整性,从而对脑卒中起到治疗作用,但外周血内皮祖细胞的稀有性严重限制了它们的作用,因而有必要进行体外扩增,以产出早期内皮祖细胞和外生内皮细胞。此次研究内皮细胞功能分析发现,(1)外生内皮细胞会内吞DiI标记的乙酰化低密度脂蛋白,并在基质胶上形成小管;(2)流式细胞仪的进一步分析表明,外生内皮细胞表达了干细胞、不成熟细胞、内皮细胞标志物CD34,CD133和CD31,而不表达造血细胞标志物CD45;(3)象脑微血管内皮细胞一样,外生内皮细胞也建立了具有星形胶质细胞和周细胞的人血脑屏障体外模型,表明外生内皮细胞具有形成紧密连接的能力;(4)通过氧糖剥夺或氧糖剥夺+再灌注模仿的缺血性损伤以相似的方式影响屏障的完整性和功能。以划痕试验比较了细胞的血管修复能力后发现,与脑微血管内皮细胞相比,外生内皮细胞具有更大的增殖和定向迁移能力;(5)在由星形胶质细胞、周细胞和脑微血管内皮细胞建立的血脑屏障的三重培养模型中,添加外生内皮细胞可有效修复在无血清条件对内皮层造成的损伤;(6)这些数据都表明,外生内皮细胞可以有效地修复血管损伤,以维持缺血性脑损伤期间或之后的(神经)血管稳态。

orcid: 0000-0001-6922-0237 (Ulvi Bayraktutan)

关键词: 细胞治疗, 内皮祖细胞, 内皮细胞, 缺血性脑卒中, 神经退行性疾病, 内皮细胞增生, 再生医学, 干细胞, 转化医学

Abstract: Breakdown of blood-brain barrier, formed mainly by brain microvascular endothelial cells (BMECs), rep- resents the major cause of mortality during early phases of ischemic strokes. Hence, discovery of novel agents that can efectively replace dead or dying endothelial cells to restore blood-brain barrier integrity is of paramount importance in stroke medicine. Although endothelial progenitor cells (EPCs) represent one such agents, their rarity in peripheral blood severely limits their adequate isolation and therapeutic use for acute ischemic stroke which necessitate their ex vivo expansion and generate early EPCs and outgrowth endothelial cells (OECs) as a result. Functional analyses of these cells, in the present study, demonstrated that only OECs endocytosed DiI-labelled acetylated low-density lipoprotein and formed tubules on matri- gel, prominent endothelial cell and angiogenesis markers, respectively. Further analyses by fow cytometry demonstrated that OECs expressed specifc markers for stemness (CD34), immaturity (CD133) and endo- thelial cells (CD31) but not for hematopoietic cells (CD45). Like BMECs, OECs established an equally tight in vitro model of human BBB with astrocytes and pericytes, suggesting their capacity to form tight junc- tions. Ischemic injury mimicked by concurrent deprivation of oxygen and glucose (4 hours) or deprivation of oxygen and glucose followed by reperfusion (20 hours) afected both barrier integrity and function in a similar fashion as evidenced by decreases in transendothelial electrical resistance and increases in para- cellular fux, respectively. Wound scratch assays comparing the vasculoreparative capacity of cells revealed that, compared to BMECs, OECs possessed a greater proliferative and directional migratory capacity. In a triple culture model of BBB established with astrocytes, pericytes and BMEC, exogenous addition of OECs effectively repaired the damage induced on endothelial layer in serum-free conditions. Taken together, these data demonstrate that OECs may efectively home to the site of vascular injury and repair the damage to maintain (neuro)vascular homeostasis during or afer a cerebral ischemic injury

Key words: cell-based therapy, endothelial progenitor cells, endothelium, ischemic stroke, neurodegeneration, novel therapeutics, outgrowth endothelial cells, regenerative medicine, stem cells, translational medicine