中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (10): 2260-2266.doi: 10.4103/1673-5374.337050

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

神经-血管单元模型:在三维微流体环境中实现人神经干细胞的培养和分化

  

  • 出版日期:2022-10-15 发布日期:2022-03-16
  • 基金资助:
    国家干细胞临床研究项目(CMR-20161129-1003);辽宁省优秀人才计划项目(XLYC1902031);大连市创新技术基金项目(2018J11CY025)

A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment

Wen-Juan Wei1, 2, Ya-Chen Wang1, 2, Xin Guan1, 2, Wei-Gong Chen1, 2, Jing Liu1, 2   

  1. 1Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China; 2Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
  • Online:2022-10-15 Published:2022-03-16
  • Contact: Jing Liu, PhD, liujing.dlrmc@hotmail.com.
  • Supported by:
    This study was supported by the Stem Cell Clinical Research Project of China, No. CMR-20161129-1003; Liaoning Province Excellent Talent Program Project of China, No. XLYC1902031; and the Dalian Innovation Technology Foundation of China, No. 2018J11CY025 (all to JL).

摘要:

既往的细胞学研究主要依赖于简单的单层细胞培养方式,不仅难以反映人体内组织器官复杂的功能特点,更加难以反映人体组织器官对外界刺激产生的真实响应。而微流控芯片技术具有高通量筛选、精确操控流体速度、细胞消耗量少、可实现长期培养、高度整合等优点,实验将集成化、微量化的微流控技术与干细胞的分化潜能相结合,于一个模块化的微加工芯片上实现神经-血管单元的显著特征,构建由人神经干细胞来源的神经元、星形胶质细胞、少突胶质细胞和具有功能的微血管屏障组成的体外功能化神经-血管单元模型。该模型由一个多层垂直的神经模块和血管模块叠加而成,二者分别连接有注射泵,提供了可控的细胞接种和物质传输条件,同时模拟了缺血缺氧损伤和体内循环系统中的炎症因子通过血脑屏障作用于脑内神经组织的过程。这一体外功能化神经-血管单元模型可为神经系统相关疾病的研究、潜在治疗靶点的筛选以及新药研发等提供条件。

https://orcid.org/0000-0002-0493-296X (Jing Liu)  

关键词: 微流体, 神经血管单元, 神经干细胞, 脑微血管内皮细胞, 神经分化, 中枢神经系统, 血脑屏障, 神经元, 星形胶质细胞, 少突胶质细胞, 器官芯片

Abstract: Biological studies typically rely on a simple monolayer cell culture, which does not reflect the complex functional characteristics of human tissues and organs, or their real response to external stimuli. Microfluidic technology has advantages of high-throughput screening, accurate control of the fluid velocity, low cell consumption, long-term culture, and high integration. By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology, an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons, astrocytes, oligodendrocytes, and a functional microvascular barrier. The model comprises a multi-layer vertical neural module and vascular module, both of which were connected with a syringe pump. This provides controllable conditions for cell inoculation and nutrient supply, and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain. The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research, drug screening, and new drug development.

Key words: (neural) differentiation, astrocyte, blood-brain barrier, brain microvascular endothelial cells, central nervous system, microfluidics, neural stem cells, neuron, neurovascular unit, oligodendrocyte, organ-on-a-chip