中国神经再生研究(英文版) ›› 2023, Vol. 18 ›› Issue (7): 1563-1569.doi: 10.4103/1673-5374.358608

• 原著:神经损伤修复保护与再生 • 上一篇    下一篇

基于神经元特异性烯醇化酶驱动铁蛋白重链多肽1的磁共振成像可检测干细胞后神经元的分化

  

  • 出版日期:2023-07-15 发布日期:2023-01-12
  • 基金资助:
    中国国家自然科学基金项目(81771892)

Magnetic resonance imaging focused on the ferritin heavy chain 1 reporter gene detects neuronal differentiation in stem cells

Xiao-Ya He1, #, Yi-Rui Zhou1, #, Tong Mu1, 2, Yi-Fan Liao1, 3, Li Jiang4, Yong Qin1, Jin-Hua Cai1, *   

  1. 1Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; 2Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; 3Department of Nuclear Medicine, The Second Hospital of the Army Medical University, Chongqing, China; 4Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
  • Online:2023-07-15 Published:2023-01-12
  • Contact: Jin-Hua Cai, MD, cai_jinhua@126.com.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, No. 81771892 (to JHC).

摘要:

间充质干细胞的成神经分化特性为神经系统疾病的治疗提供了一种新的策略,因此有必要寻找一种无创、敏感的活体成像方法对移植干细胞进行实时、动态的监测。作者既往研究证实以慢病毒为载体将铁蛋白重链多肽1报告基因转染骨髓间充质干细胞可基于铁蛋白重链多肽1基因表达以磁共振成像长期示踪干细胞的增殖和分化过程,但却无法根据磁共振成像信号的变化来判断干细胞是否或何时发生成神经分化。为解决这个问题,已找到一种能在干细胞成神经分化前后差异性表达的基因-神经元特异性烯醇化酶,此次实验成功构建了这种携带神经元特异性烯醇化酶启动子的铁蛋白重链多肽1基因表达的慢病毒,以其感染骨髓间充质干细胞,然后诱导细胞成神经元分化。细胞及动物研究结果显示,只有在干细胞成神经分化后,神经元特异性烯醇化酶才能作为启动子有效驱动铁蛋白重链多肽1表达,继而导致细胞内铁积累,从而改变磁共振成像信号。因此这项研究建立了一种基于神经元特异性启动子驱动的报告基因表达的创新磁共振成像模式。该成像方式可用于非侵入性且敏感地检测干细胞的神经元分化,这可能有助于干细胞疗法的应用。

https://orcid.org/0000-0001-7971-8936 (Jin-Hua Cai)

关键词: 间充质干细胞, 神经元特异性烯醇化酶, 铁蛋白重链多肽1基因, 神经元分化, 分子成像, 磁共振成像, 启动子, 神经元, 神经元样细胞, 柠檬酸铁铵

Abstract: The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders. Thus, there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells. Our previous study confirmed that magnetic resonance imaging, with a focus on the ferritin heavy chain 1 reporter gene, could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene. However, we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal. To solve this problem, we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells. In this study, we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene; we used this lentivirus to transduce bone marrow mesenchymal stem cells. Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells; this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal. In summary, we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter. This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells, which may be useful in stem cell-based therapies.

Key words: ferric ammonium citrate, ferritin heavy chain 1 gene, magnetic resonance imaging, mesenchymal stem cells, molecular imaging, neuronal differentiation, neuron-like cells, neurons, neuron-specific enolase, promoter