中国神经再生研究(英文版) ›› 2023, Vol. 18 ›› Issue (12): 2773-2780.doi: 10.4103/1673-5374.373660

• 原著:视神经损伤修复保护与再生 • 上一篇    下一篇

无长突细胞选择性敲除锌转运蛋白3可促进视网膜神经节细胞存活和视神经再生

  

  • 出版日期:2023-12-15 发布日期:2023-06-16
  • 基金资助:
    国家重点研发项目(2020YFA0112701);国家自然科学基金项目(82171057,81870657);广州市科技计划项目(202206080005);广东省自然科学基金项目(2022A1515012168)

Selective deletion of zinc transporter 3 in amacrine cells promotes retinal ganglion cell survival and optic nerve regeneration after injury

Zhe Liu, Jingfei Xue, Canying Liu, Jiahui Tang, Siting Wu, Jicheng Lin, Jiaxu Han, Qi Zhang, Caiqing Wu, Haishun Huang, Ling Zhao, Yehong Zhuo*, Yiqing Li*   

  1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
  • Online:2023-12-15 Published:2023-06-16
  • Contact: Yiqing Li, MD, PhD, liyiqing3@mail.sysu.edu.cn; Yehong Zhuo, MD, PhD, zhuoyh@mail.sysu.edu.cn.
  • Supported by:
    This study was supported by the National Key R&D Project of China, No. 2020YFA0112701 (to YZ); the National Natural Science Foundation of China, Nos. 82171057 (to YZ), 81870657 (to YL); Science and Technology Program of Guangzhou of China, No. 202206080005 (to YZ); and the Natural Science Foundation of Guangdong Province of China, No. 2022A1515012168 (to YL).

摘要:

视力取决于从视网膜经视神经准确传导到大脑的信号,而视神经是由源自视网膜神经节细胞的轴突束所组成。哺乳动物视神经作为中枢神经系统的重要组成部分,一旦受伤就不能再生,从而造成永久性视力丧失。且到目前为止,尚无临床方法可再生视神经并恢复视力。由于作者团队既往研究发现,在视网膜视神经损伤后,内丛层囊泡中游离锌水平迅速增加,且螯合Zn2+可显著促进轴突再生。因此此次实验,分别在无长突细胞和视网膜神经节细胞中条件性敲除锌转运蛋白3构建了2种转基因小鼠(VGATCreZnT3fl/fl和VGLUT2CreZnT3fl/fl),得出视网膜中急剧升高的游离Zn2+来源于无长突细胞的直接证据。继而发现,在无长突细胞中选择性敲除锌转运蛋白3能够有效促进视神经钳夹伤后视网膜神经节细胞的存活以及视神经的再生,并能改善视网膜神经节细胞功能,促进视力恢复。对视网膜神经节细胞进行测序分析结果提示,抑制突触前Zn2+的释放能够影响突触后神经元视网膜神经节细胞内存活相关关键基因的转录,调节无长突细胞-视网膜神经节细胞突触间联系,从而影响视网膜神经节细胞的命运。上述结果显示,无长突细胞释放Zn2+可触发神经元视网膜神经节细胞中与神经元生长和存活相关的转录组变化,并影响视网膜网络的突触可塑性。这一结果使锌依赖性视网膜神经节细胞死亡的理论更加准确和完整,也为复杂的视网膜细胞网络间作用提供新的见解。

https://orcid.org/0000-0002-3483-7189 (Yiqing Li); https://orcid.org/0000-0003-3247-7199 (Yehong Zhuo)

关键词: 条件敲除, 视神经损伤, 锌转运蛋白3, 突触前神经元, 视网膜网络, 轴突再生, 视力, 突触小泡, 突触连接, 神经递质

Abstract: Vision depends on accurate signal conduction from the retina to the brain through the optic nerve, an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells. The mammalian optic nerve, an important part of the central nervous system, cannot regenerate once it is injured, leading to permanent vision loss. To date, there is no clinical treatment that can regenerate the optic nerve and restore vision. Our previous study found that the mobile zinc (Zn2+) level increased rapidly after optic nerve injury in the retina, specifically in the vesicles of the inner plexiform layer. Furthermore, chelating Zn2+ significantly promoted axonal regeneration with a long-term effect. In this study, we conditionally knocked out zinc transporter 3 (ZnT3) in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines (VGATCreZnT3fl/fl and VGLUT2CreZnT3fl/fl, respectively). We obtained direct evidence that the rapidly increased mobile Zn2+ in response to injury was from amacrine cells. We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury, improved retinal ganglion cell function, and promoted vision recovery. Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn2+ affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons, regulated the synaptic connection between amacrine cells and retinal ganglion cells, and affected the fate of retinal ganglion cells. These results suggest that amacrine cells release Zn2+ to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells, thereby influencing the synaptic plasticity of retinal networks. These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks.

Key words: axonal regeneration, conditional knockout, neurotransmitter, optic nerve injury, presynaptic neuron, retinal network, synaptic connection, synaptic vesicles, visual acuity, zinc transporter 3