中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (3): 663-670.doi: 10.4103/1673-5374.380909

• 原著:周围神经损伤修复保护与再生 • 上一篇    下一篇

人工智能辅助修复周围神经损伤:一个新的研究热点及挑战

  

  • 出版日期:2024-03-15 发布日期:2023-09-02
  • 基金资助:
    首都健康改善和研究基金(2022-2-2072)

Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges

Yang Guo, Liying Sun, Wenyao Zhong, Nan Zhang, Zongxuan Zhao, Wen Tian*   

  1. Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
  • Online:2024-03-15 Published:2023-09-02
  • Contact: Wen Tian, MS, wentiansyz@hotmail.com.
  • Supported by:
    This study was supported by the Capital’s Funds for Health Improvement and Research, No. 2022-2-2072 (to YG).

摘要:

人工智能和周围神经再生之间从技术上看没有直接联系,但它们可以在医学领域中相互合作,人工智能可以用于分析和处理周围神经再生方面的数据,同时周围神经再生的研究结果也可以提供一些有价值的数据来丰富人工智能的算法。为了解人工智能在周围神经损伤疾病诊疗、康复和科研等多个领域中的重大进步和突破。为此,作者应用CiteSpace和VOSviewer软件,对Web of Science 核心集数据库中收录的1994-2023年人工智能在周围神经损伤及修复领域的应用的文章数据进行了可视化分析发现,目前人工智能在周围神经损伤及修复领域的应用较为公认的几个研究热点是:(1)利用神经影像学和人工智能技术进行周围神经损伤的诊断、分类和预后评估研究,如角膜共聚焦显微镜和相干反斯托克斯拉曼光谱。(2)利用人工神经网络和机器学习算法等技术,研究周围神经损伤影响下的运动控制及运动康复等,如开发可穿戴设备和辅助轮椅系统等。(3)利用人工智能技术结合深度学习提高周围神经电刺激治疗的精度和效果,如植入式周围神经接口。(4)将人工智能技术应用于脑机接口中,可使残疾人以及失去行动能力的患者能够控制机器或其他设备,如网络式手假体。(5)人工智能可以驱动机器人在手术中或康复治疗中代替医生完成某些关键步骤,从而降低手术风险和并发症发生,促进术后康复。尽管人工智能在周围神经损伤及修复领域表现出了许多的优点和应用潜力,但仍然存在数据缺乏和不平衡性、数据精确性和可重复性、医学伦理学(如隐私、数据安全、研究的透明度)等问题。未来研究者们需要首先解决数据收集的问题,需要更多大规模、质量高的临床数据集来训练人工智能模型,而对数据进行多模态数据的处理也是必要的,同时,鼓励跨学科合作,促进医工融合,开展多中心、大样本临床研究也是必要的。

https://orcid.org/0000-0004-0446-8628 (Wen Tian)

关键词: 人工智能, 机器学习, 深度学习, 周围神经, 神经网络, 网络式手假体, 脑机接口, 神经接口, 人工假肢, 医工融合, 神经再生

Abstract: Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury. Specifically, it can be used to analyze and process data regarding peripheral nerve injury and repair, while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms. To investigate advances in the use of artificial intelligence in the diagnosis, rehabilitation, and scientific examination of peripheral nerve injury, we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023. We identified the following research hotspots in peripheral nerve injury and repair: (1) diagnosis, classification, and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques, such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy; (2) motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms, such as wearable devices and assisted wheelchair systems; (3) improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning, such as implantable peripheral nerve interfaces; (4) the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility, enabling them to control devices such as networked hand prostheses; (5) artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation, thereby reducing surgical risk and complications, and facilitating postoperative recovery. Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair, there are some limitations to this technology, such as the consequences of missing or imbalanced data, low data accuracy and reproducibility, and ethical issues (e.g., privacy, data security, research transparency). Future research should address the issue of data collection, as large-scale, high-quality clinical datasets are required to establish effective artificial intelligence models. Multimodal data processing is also necessary, along with interdisciplinary collaboration, medical-industrial integration, and multicenter, large-sample clinical studies.

Key words: artificial intelligence, artificial prosthesis, medical-industrial integration, brain-machine interface, deep learning, machine learning, networked hand prosthesis, neural interface, neural network, neural regeneration, peripheral nerve