中国神经再生研究(英文版) ›› 2026, Vol. 21 ›› Issue (3): 869-886.doi: 10.4103/NRR.NRR-D-24-01324

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

缺血性脑卒中的神经元死亡机制及神经保护策略

  

  • 出版日期:2026-03-15 发布日期:2025-07-01
  • 基金资助:
    此研究得到了国家自然科学基金(82171387,31830111)的资助。

Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke

Chun Li1, 2, Yuping Luo1, 3, Siguang Li1, 3, *   

  1. 1 Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China;  2 Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China;  3 Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
  • Online:2026-03-15 Published:2025-07-01
  • Contact: Siguang Li, PhD, lisiguang@tongji.edu.cn.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, Nos. 82171387 and 31830111 (both to SL).

摘要:

脑卒中尤其是缺血性脑卒中是导致全球长期残疾和死亡的主要原因,它是由于脑动脉闭塞,严重减少了向脑组织输送血液、氧气和必需营养物质。这种匮乏引发了一连串的细胞事件,最终导致神经元死亡。最近的研究阐明了脑卒中的多因素发病机制,强调了能量衰竭、兴奋毒性、氧化应激、神经炎症和细胞凋亡的作用。此综述旨在深入探讨脑卒中尤其是缺血性脑卒中导致神经元死亡的基本机制,并仔细研究神经保护治疗方法的进展,以减轻神经元损失,促进脑卒中后神经功能的恢复。文章探讨了广为接受的缺血性脑卒中期间神经元死亡的潜在途径,包括凋亡、自噬、热凋亡、铁凋亡和坏死的相互作用,这些因素共同影响着神经元的命运。此外,文章还讨论了神经保护疗法的进展,包括从药物调节到干细胞疗法等一系列干预措施,旨在减轻神经元损伤并加强缺血性脑卒中后的功能恢复。尽管取得了这些进展,但将机制研究成果转化为有效的临床疗法仍面临挑战。例如,虽然神经保护策略已在临床前模型中显示出前景,但其在临床试验中的疗效并不一致,这主要是由于缺血性卒中复杂的病理和干预时机造成的。总之,这篇综述综合了对缺血后驱动神经元死亡的分子和细胞通路错综复杂的相互作用的机制认识,揭示了前瞻性神经保护疗法的前沿进展,强调了再生医学的前景,并为潜在的临床突破提供了前瞻性视角。在未来研究中,精准靶向干预的不断发展预计将显著加强预防策略并改善缺血性脑卒中的临床治疗效果。

https://orcid.org/0000-0002-1740-2060 (Siguang Li)

关键词: 凋亡, 脑梗塞, 临床试验, 炎症, 脑卒中, 缺血性脑卒中, 线粒体, 神经元, 神经保护, 氧化应激, 病理生理学, 干细胞

Abstract: Stroke, particularly ischemic stroke, is the leading cause of long-term disability and mortality worldwide. It occurs due to the occlusion of the cerebral arteries, which significantly reduces the delivery of blood, oxygen, and essential nutrients to brain tissues. This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death. Recent studies have clarified the multifactorial pathogenesis of ischemic stroke, highlighting the roles of energy failure, excitotoxicity, oxidative stress, neuroinflammation, and apoptosis. This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke. Additionally, we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke, including the interplay of apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis, which collectively influence neuronal fate. We also discussed advancements in neuroprotective therapeutics, encompassing a range of interventions from pharmacological modulation to stem cell-based therapies, aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke. Despite these advancements, challenges remain in translating mechanistic insights into effective clinical therapies. Although neuroprotective strategies have shown promise in preclinical models, their efficacy in human trials has been inconsistent, often due to the complex pathology of ischemic stroke and the timing of interventions. In conclusion, this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia. It sheds light on cutting-edge advancements in potential neuroprotective therapeutics, underscores the promise of regenerative medicine, and offers a forward-looking perspective on potential clinical breakthroughs. The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes.

Key words: apoptosis, cerebral infarction, clinical trial, inflammation, ischemic stroke, mitochondria, neurons, neuroprotection, oxidative stress, pathophysiology, stem cells