中国神经再生研究(英文版) ›› 2026, Vol. 21 ›› Issue (2): 506-520.doi: 10.4103/NRR.NRR-D-24-00652

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

神经调控技术促进脑损伤后神经功能的恢复:从实验室到临床

  

  • 出版日期:2026-02-15 发布日期:2025-05-20

Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside

Mei Liu1, #, Yijing Meng1, #, Siguang Ouyang1 , Meng’ai Zhai2 , Likun Yang1, *, Yang Yang1, *, Yuhai Wang1, *   

  1. 1 Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, China;  2 Department of Neurosurgery, The 904th Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
  • Online:2026-02-15 Published:2025-05-20
  • Contact: Likun Yang, MD, PhD, beck_yang@163.com; Yang Yang, MD, PhD, yangyang200905@163.com; Yuhai Wang, MD, PhD, wangyuhai67@126.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 82371399 (to YY); the Natural Science Foundation of Jiangsu Province, No. BK20221206 (to YY); the Young Elite Scientists Sponsorship Program of Jiangsu Province, No. TJ-2022-028 (to YY); the Scientific Research Program of Wuxi Health Commission, No. Z202302 (to LY).

摘要:

由于成年哺乳动物中枢神经系统损伤后可塑性有限,因而其自发性恢复往往是不适应或不充分的,这是脑损伤后功能恢复的主要障碍。神经调控技术是目前医学发展最快的领域之一,其可利用电、磁、声和光来恢复或优化大脑功能,促进重组或长期修复来促进脑损伤功能的恢复。此次综述旨在深入总结神经调控技术在促进脑损伤后神经功能恢复方面的作用和机制。其中大多数神经调控技术已在临床实践中得到了广泛的应用,并在多种脑损伤中显示出对神经功能的显著改善能力。尽管如此,仍有研究存在负面结果,这可能是由于刺激方案、观察期以及临床试验参与者损伤严重程度的差异导致的。同时研究发现,不同的神经调控技术存在相似的机制,包括促进神经可塑性、增强神经营养因子的释放、改善脑血流、抑制神经炎症以及提供神经保护作用。最后基于各种神经刺激的优缺点,提出了闭合神经环路刺激、个性化治疗、学科交叉合作和精准刺激将是未来发展方向。

https://orcid.org/0000-0003-2074-9468 (Likun Yang); https://orcid.org/0000-0001-6472-5578 (Yang Yang); 

https://orcid.org/0000-0002-2604-8235 (Yuhai Wang)

关键词: 神经调控技术, 脑卒中, 创伤性脑损伤, 可塑性, 功能恢复, 非侵入性电刺激, 侵入性电刺激, 经颅磁刺激, 经颅超声刺激, 经颅光生物调节

Abstract: Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.

Key words: functional recovery, invasive electrical stimulation, neuromodulation, noninvasive electrical stimulation, stroke, transcranial magnetic stimulation, transcranial photobiomodulation, transcranial ultrasound stimulation, traumatic brain injury