中国神经再生研究(英文版) ›› 2026, Vol. 21 ›› Issue (7): 2670-2683.doi: 10.4103/NRR.NRR-D-24-01599

• 综述:视神经损伤修复保护与再生 • 上一篇    下一篇

磷酸酶和张力蛋白同源物:视神经再生的潜在靶点

  

  • 出版日期:2026-07-15 发布日期:2025-10-17
  • 基金资助:
    国家自然科学基金(82260279、31960169)、江西省自然科学基金(20202ACB206002、20213BCJ22057)以及南昌大学基础医学科学学院资助项目。

Phosphatase and tensin homolog: A potential target for therapeutic intervention in optic nerve regeneration

Bin Tong1, #, Yanzhuo Song1, #, Zhengyang Li1, #, Muhan Cai1 , Haodong Qi1 , Kangtai Su1 , Hong A. Xu1, 2, *   

  1. 1 School of Ophthalmology and Optometry, The Huankui Academy, The First Clinical Medical College, School of Basic Medical Sciences, The Second Affiliated Hospital, and Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China;  2 Jiangxi Province Key Laboratory of Brain Science and Brain Health, Nanchang, Jiangxi Province, China
  • Online:2026-07-15 Published:2025-10-17
  • Contact: Hong A. Xu, PhD, xuhong@ncu.edu.cn.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, Nos. 82260279, 31960169; the Natural Science Foundation of Jiangxi Province, Nos. 20202ACB206002, 20213BCJ22057; and a grant from School of Basic Medical Sciences, Nanchang University (all to HAX).

摘要:

近期研究发现,磷酸酶和张力蛋白同源物(PTEN)的抑制是已知促进视神经再生的最强单基因干预手段之一,主要通过激活蛋白激酶B(AKT)/磷脂酰肌醇-3激酶(PI3K)/哺乳动物雷帕霉素靶蛋白(mTOR)信号轴实现。文章的目的是介绍PTEN下调如何参与视神经再生的每个关键阶段,并总结视神经再生治疗干预的潜在靶点。视神经再生经历5个阶段:应激反应、生长导航、神经再生、突触重建和髓鞘再生。在应激反应阶段,PTEN抑制可增强视网膜神经节细胞的存活率并促进小胶质细胞的增殖。在神经再生阶段,PTEN水平降低可促进线粒体运输,而PTEN-L异构体的抑制则特异性促进线粒体自噬。在突触重建阶段,PTEN的缺失调节轴突延伸相关蛋白的合成并稳定小胶质细胞微管,从而加速受损突触的清除和新突触的形成。在髓鞘再生阶段,PTEN的敲除促进少突胶质细胞前体细胞的增殖和少突胶质细胞的分化,并缓解髓鞘化障碍。文章还讨论了神经元特异性PTEN抑制的当前策略及转化挑战,包括脱靶效应、递送精准度和长期安全性特征。通过整合分子机制与新兴生物工程方法,文章为开发针对视神经再生的靶向疗法及中枢神经系统再生领域的更广泛应用提供了框架。

https://orcid.org/0000-0003-4938-0203 (Hong A. Xu)

关键词: 生长锥, 哺乳动物雷帕霉素靶蛋白, 小胶质细胞, 线粒体, 视神经再生, 少突胶质细胞, 磷酸酶和张力蛋白同源物, 磷脂酰肌醇-3激酶, 突触形成, 神经再生

Abstract: Recent studies have found that the suppression of phosphatase and tensin homolog is one of the most effective single-gene approaches for promoting optic nerve regeneration. This effect is primarily mediated through the activation of the protein kinase B/phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. The purpose of this article is to elucidate how the downregulation of phosphatase and tensin homolog is involved in each key phase of optic nerve regeneration and to summarize the potential targets for therapeutic interventions in this process. Optic nerve regeneration progresses through five phases: stress response, growth navigation, nerve regeneration, synaptic reconstruction, and remyelination. During the stress response phase, the suppression of phosphatase and tensin homolog enhances the survival of retinal ganglion cells and promotes the proliferation of microglia. In the nerve regeneration phase, reduced levels of phosphatase and tensin homolog facilitate mitochondrial transport, while inhibition of the phosphatase and tensin homolog-L isoform specifically promotes mitophagy. During the synaptic reconstruction phase, the deletion of phosphatase and tensin homolog modulates the synthesis of axon extension-related proteins and stabilizes microglial microtubules, thereby accelerating the clearance of damaged synapses and the formation of new ones. During the remyelination phase, the knockout of phosphatase and tensin homolog promotes the proliferation of oligodendrocyte progenitor cells and the differentiation of oligodendrocytes, relieving myelination obstruction. This paper also discusses current strategies and translational challenges for neuron-specific inhibition of phosphatase and tensin homolog, including off-target effects, delivery precision, and long-term safety. By integrating molecular insights with emerging bioengineering approaches, this paper provides a framework for developing targeted therapies for optic nerve regeneration and broader applications in the field of central nervous system regeneration.

Key words: growth cone, mammalian target of rapamycin, microglia, mitochondria, neural regeneration, oligodendrocyte, optic nerve regeneration, phosphatase and tensin homolog, phosphoinositide 3-kinase, synaptogenesis