中国神经再生研究(英文版) ›› 2013, Vol. 8 ›› Issue (30): 2789-2799.doi: 10.3969/j.issn.1673-5374.2013.30.001

• 原著:退行性病与再生 •    下一篇

以静息态脑功能网络异常特征揭示阿尔茨海默病的转化过程

  

  • 收稿日期:2013-06-04 修回日期:2013-08-28 出版日期:2013-10-25 发布日期:2013-10-25
  • 基金资助:

    国家自然科学基金项目(61070077, 61170136,61373101);山西省自然科学基金项目(2011011015-4);北京市博士后工作经费资助项目 (Q6002020201201)

An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease

Jie Xiang1, 2, Hao Guo1, Rui Cao1, Hong Liang1, Junjie Chen1   

  1. 1 College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
    2 International WIC Institute, Beijing University of Technology, Beijing 100022, China
  • Received:2013-06-04 Revised:2013-08-28 Online:2013-10-25 Published:2013-10-25
  • Contact: Junjie Chen, Ph.D., Professor, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China, xiangjie@tyut.edu.cn.
  • About author:Jie Xiang, Ph.D., Associate professor, College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China; International WIC Institute, Beijing University of Technology, Beijing 100022, China
  • Supported by:

    This study was sponsored by the National Natural Science Foundation of China, No. 61070077, 61170136, 61373101; the Natural Science Foundation of Shanxi Province, No. 2011011015-4; and Beijing Postdoctoral Science Foundation, No. Q6002020201201.

摘要:

多数研究认为轻度认知障碍和阿尔茨海默病患者存在颞叶、海马、前额等脑区的结构或认知功能改变,其脑网络的连接强度、网络效率、节点属性均出现异常。但是,大多数研究仅对比分析两者与正常对照者的差异,实验利用入组标准较严格的阿尔茨海默病神经影像学倡议数据集,提取正常对照、早期轻度认知障碍、晚期轻度认知障碍、阿尔茨海默病等4类人群的静息态功能MRI数据,构建了相应脑网络,通过分析4者的静息态脑功能网络特性,观察阿尔茨海默病转化之前轻度认知障碍不同阶段的演变。结果发现正常对照、早期轻度认知障碍、晚期轻度认知障碍、阿尔茨海默病静息态脑功能网络的最短路径逐步增加,而聚类系数逐步降低,表明患者表现的痴呆与脑网络整体效率降低有关系。另外,从功能网络的角度得出从健康老年人到轻度认知障碍直至阿尔茨海默病过程中脑区节点的网络功能渐变过程。由于脑区的节点属性改变可能反映了脑区认知功能的改变,推测由于早期的记忆、听力、语言功能下降最终导致弥漫性脑区受损和其他认知功能的衰退。

关键词: 神经再生, 神经退行性变, 人脑连接组, 功能MRI, 图论, 静息态, 小世界特性, 早期轻度认知障碍, 晚期轻度认知障碍, 阿尔茨海默病, 老龄化, 弥散性脑疾病, 基金资助文章

Abstract:

Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex of patients with mild cognitive impairment and Alzheimer’s disease, and brain network-connection strength, network efficiency, and nodal attributes are abnormal. However, existing research has only analyzed the differences between these patients and normal controls. In this study, we constructed brain networks using resting-state functional MRI data that was extracted from four populations (nor-mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, and patients with Alzheimer’s disease) using the Alzheimer’s Disease Neuroimaging Initiative data set. The aim was to analyze the characteristics of resting-state functional neural networks, and to observe mild cognitive impairment at different stages before the transformation to Alzheimer’s disease. Results showed that as cognitive deficits increased across the four groups, the shortest path in the rest-ing-state functional network gradually increased, while clustering coefficients gradually decreased. This evidence indicates that dementia is associated with a decline of brain network efficiency. In addi-tion, the changes in functional networks revealed the progressive deterioration of network function across brain regions from healthy elderly adults to those with mild cognitive impairment and Alz-heimer’s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in brain regions, and we speculate that early impairments in memory, hearing, and language function can eventually lead to diffuse brain injury and other cognitive impairments.

Key words: neural regeneration, neurodegeneration, human connectome, functional MRI, graph theory, resting state, small world property, early mild cognitive impairment, late mild cognitive impairment, Alzheimer’s disease, aging, diffuse brain disease, grants-supported paper, neuroregeneration