中国神经再生研究(英文版) ›› 2013, Vol. 8 ›› Issue (8): 745-753.doi: 10.3969/j.issn.1673-5374.2013.08.009

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

局部场电位传递及波动变小可阻滞痫性网络早期同步化

  

  • 收稿日期:2012-10-24 修回日期:2013-01-25 出版日期:2013-03-15 发布日期:2013-03-15
  • 基金资助:

    国家自然科学基金(No. 30971534),湘雅三院125计划项目.

The role of local field potential coupling in epileptic synchronization

Jiongxing Wu, Heng Yang, Yufeng Peng, Liangjuan Fang, Wen Zheng, Zhi Song   

  1. Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
  • Received:2012-10-24 Revised:2013-01-25 Online:2013-03-15 Published:2013-03-15
  • Contact: Zhi Song, M.D., Chief physician, Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China, docsong@126.com.
  • About author:Jiongxing Wu☆, M.D., Attending physician.
  • Supported by:

    This work was supported by grants from the National Natural Science Foundation of China, No. 30971534 and 125 Project of the Third Xiangya Hospital of Central South University, China.

摘要:

文章希望能清楚阐述如下观点:①神经元同步化是脑功能的基础,因此,阻滞神经网络上过度同步化电活动的形成至少在理论上可以减少或控制痫性发作。②局部电位耦合在网络同步化过程中是一种非常普遍的机制,去除神经元及神经元网络彼此之间的耦合能显著改变细胞外场电位变化,干预局部电位传递介导的耦合能达到去同步化,减少甚至终止痫性发作。③神经元产生的同步化电活动对细胞外空间大小变化敏感,细胞外空间大小影响场电位传递的效率与细胞兴奋阈值。④通过外来干预使场电位波动变小,产生阻滞痫性早期同步化的形成的干预技术。

关键词: 神经再生, 综述, 癫痫, 神经元, 同步化放电, 神经网络, 细胞外空间, 局部电位耦合, 场电位, 细胞兴奋阈值, 基金资助文章

Abstract:

This review hopes to clearly explain the following viewpoints: (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.

Key words: neural regeneration, reviews, epilepsy, neurons, synchronized discharge, neural network, extracellular space, local potential coupling, field potentials, cell excitation threshold value, grants-supported paper, neuroregeneration