中国神经再生研究(英文版) ›› 2025, Vol. 20 ›› Issue (12): 3620-3634.doi: 10.4103/NRR.NRR-D-23-02004

• 原著:退行性病与再生 • 上一篇    下一篇

参与阿尔茨海默病颞中回血管功能障碍的新基因:转录组学联合机器学习分析

  

  • 出版日期:2025-12-15 发布日期:2025-03-17

Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer’s disease: transcriptomics combined with machine learning analysis

Meiling Wang1, #, Aojie He1, #, Yubing Kang1 , Zhaojun Wang1 , Yahui He1 , Kahleong Lim2 , Chengwu Zhang1, 3, *, Li Lu1, 3, *   

  1. 1 School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China;  2 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore;  3 Precise Diagnosis and Treatment Center for Neurodegenerative Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
  • Online:2025-12-15 Published:2025-03-17
  • Contact: Li Lu, luli@sxmu.edu.cn; Chengwu Zhang, chengwu_zhang@sxmu.edu.cn.
  • Supported by:
    The study was supported by the Natural Science Foundation of Shanxi Province, No. 20210302123299 and The Belt and Road Program of Shanxi Province, No. 110000261420228002 (both to CZ).

摘要:

有研究认为血管功能障碍与阿尔茨海默病的发病机制密切相关。颞中回是阿尔茨海默病患者大脑损伤最为明显的区域之一。揭示颞中回中参与血管畸变的分子对阐明阿尔茨海默病的发病机制以及探索新的干预靶点具有重要的价值。此次实验首先对阿尔茨海默病患者以及健康对照者颞中回进行了单细胞转录测序功能富集分析,发现阿尔茨海默病颞中回血管功能发生了显著改变。而后使用CellChat行细胞互作分析,发现细胞相互作用数量减少,其中内皮细胞和周细胞改变最为显著,并筛选出差异表达的基因。其次基于CellChat的结果使用AUCell软件评估特定细胞中的通路活性,发现向阿尔茨海默病患者颞中回脑区血管功能发生显著改变尤其是与VEGFA-VEGFR2信号改变直接相关。接下来通过AUCell分析鉴定出与该信号通路活性直接相关的内皮细胞与周细胞亚类,得出阿尔茨海默病颞中回发生显著改变的2类细胞亚类分别是Erb-B2受体酪氨酸激酶4高表达的内皮细胞(ERBB4high)和血管生成素样4高表达的周细胞(ANGPTL4high)亚类。最后结合批量RNA测序数据以及2种机器学习算法(LASSO和随机森林)筛选出4种特征基因,即生长抑素(Somatostatin, SST)、蛋白酪氨酸磷酸酶非受体3型(Protein tyrosine phosphatase non-receptor type 3, PTPN3)、谷氨酰胺酶(Glutaminase, GLS)和原肌凝蛋白3(Tropomyosin 3, TPM3),这些基因在阿尔茨海默病颞中回中下调,且可靶向血管内皮生长因子通路,同时转基因阿尔茨海默病小鼠模型也确认这些基因的一致性改变。综上,研究通过转录组学和机器学习得出阿尔茨海默病患者颞中回内皮细胞和周细胞间通讯的变化,并进一步筛选出了阿尔茨海默病患者颞中回和血管功能有关的的4种新基因。这些发现有助于深入了解了阿尔茨海默病发病的分子机制,并为其治疗提供新靶点。

https://orcid.org/0000-0003-4681-6534 (Chengwu Zhang); https://orcid.org/0000-0003-2523-3372 (Li Lu)

关键词: 阿尔茨海默病, 颞中回, 内皮细胞, 周细胞, 细胞间通讯, 脑血管疾病, CellChat, 机器学习, 生物信息学, 血管内皮生长因子通路

Abstract: Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer’s disease. The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer’s disease. Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer’s disease and discovery of novel targets for intervention. We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer’s disease and healthy controls, revealing obvious changes in vascular function. CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer’s disease patients, with altered intercellular communication of endothelial cells and pericytes being the most prominent. Differentially expressed genes were also identified. Using the CellChat results, AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer’s disease were directly related to changes in the vascular endothelial growth factor (VEGF)A–VEGF receptor (VEGFR) 2 pathway. AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA–VEGFR2 pathway activity. Two subtypes of middle temporal gyrus cells showed significant alteration in AD: endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4 (ERBB4high) and pericytes with high expression of angiopoietin-like 4 (ANGPTL4high). Finally, combining bulk RNA sequencing data and two machine learning algorithms (least absolute shrinkage and selection operator and random forest), four characteristic Alzheimer’s disease feature genes were identified: somatostatin (SST), protein tyrosine phosphatase non-receptor type 3 (PTPN3), glutinase (GL3), and tropomyosin 3 (PTM3). These genes were downregulated in the middle temporal gyrus of patients with Alzheimer’s disease and may be used to target the VEGF pathway. Alzheimer’s disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus. In conclusion, this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer’s disease. These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer’s disease and present novel treatment targets.

Key words: Alzheimer’s disease, bioinformatics, CellChat, cerebrovascular disorders, endothelial cells, intercellular communication, machine learning, middle temporal gyrus, pericytes, vascular endothelial growth factor pathway