中国神经再生研究(英文版) ›› 2026, Vol. 21 ›› Issue (1): 173-186.doi: 10.4103/NRR.NRR-D-24-00613

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

神经功能康复:神经肌肉重建技术的进步和更严峻的挑战

  

  • 出版日期:2026-01-15 发布日期:2025-04-21
  • 基金资助:
    国家自然科学基金(81927804,82260456,U21A20479)、深圳市科技计划项目(JCYJ20230807140559047)、广东省重点领域研发计划(2020B0909020004)、广东省基础与应用研究基金(2023A1515011478)、广东省科技计划项目(2022A0505090007)以及深圳市科创委(QN2022032013L)。

Neural functional rehabilitation: Exploring neuromuscular reconstruction technology advancements and challenges

Chunxiao Tang1 , Ping Wang1 , Zhonghua Li2 , Shizhen Zhong2, *, Lin Yang1, *, Guanglin Li1, *   

  1. 1 Department of Neural Engineering Center, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong Province, China;  2 Department of Human Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
  • Online:2026-01-15 Published:2025-04-21
  • Contact: Guanglin Li, PhD, gl.li@siat.ac.cn; Lin Yang, MD, l.yang3@siat.ac.cn; Shizhen Zhong, Academician, zhszhnfso@126.com.
  • Supported by:
    This work was supported in part by the National Natural Science Foundation of China, Nos. 81927804 (to GL), 82260456 (to LY), U21A20479 (to LY); Science and Technology Planning Project of Shenzhen, No. JCYJ20230807140559047 (to LY); Key-Area Research and Development Program of Guangdong Province, No. 2020B0909020004 (to GL); Guangdong Basic and Applied Research Foundation, No. 2023A1515011478 (to LY); the Science and Technology Program of Guangdong Province, No. 2022A0505090007 (to GL); and Ministry of Science and Technology, Shenzhen, No. QN2022032013L (to LY).

摘要:

神经机接口技术是一种开创性的方法,可修复先天性疾病、创伤和神经系统疾病等引起的神经功能障碍和残疾所带来的复杂挑战。神经机接口与脑和周围神经系统建立直接联系,以恢复受损的运动、感觉和认知功能,提高患者的生活质量。此次综述深入分析了各种神经机接口技术的发展历程和整合,包括靶向肌肉再神经支配、再生周围神经接口、靶向感觉再支配、脑机接口以及激动剂-拮抗剂肌神经接口。柔性电子技术和生物工程的最新发展促进了更具生物相容性和高分辨率电极的产生,这提高了神经机接口的性能和寿命。但是仍然存在信号干扰、纤维组织包封以及精确解剖定位和重建的需求等挑战。先进信号处理算法的集成,特别是人工智能和机器学习的算法,极大地提高了信号解码的准确性和实时性,使神经机接口更加直观和有效。神经机接口的临床应用广泛,从假肢运动恢复和感觉反馈到神经疾病的治疗和神经康复。该综述还重点关注了多学科合作在推进神经机接口技术方面的重要作用,结合生物医学工程、临床手术和神经工程,可开发出更复杂、更可靠的神经机接口。解决现有的局限性并探索新的技术前沿,可使神经机接口彻底改变神经假体和神经康复,为促进神经损伤患者活动能力、独立性和生活质量的提升。通过利用详细的解剖学知识和整合尖端的神经工程原理,研究人员可突破神经机接口可能的界限,创造出越来越复杂和持久的假肢装置,为神经损伤患者提供持久的帮助。

https://orcid.org/0000-0001-9016-2617 (GuanglinLi); https://orcid.org/0000-0003-1372-8677 (Lin Yang)

关键词: 神经机接口, 再生周围神经接口, 靶向肌肉再神经支配, 靶向感觉再支配, 脑机接口, 激动剂-拮抗剂肌神经接口, 神经假体, 临床解剖学, 本体感觉, 生物相容性

Abstract: Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders, traumatic injuries, and neurological diseases. Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor, sensory, and cognitive functions, significantly improving patients’ quality of life. This review analyzes the chronological development and integration of various neural machine interface technologies, including regenerative peripheral nerve interfaces, targeted muscle and sensory reinnervation, agonist–antagonist myoneural interfaces, and brain–machine interfaces. Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes, which enhance the performance and longevity of neural machine interface technology. However, significant challenges remain, such as signal interference, fibrous tissue encapsulation, and the need for precise anatomical localization and reconstruction. The integration of advanced signal processing algorithms, particularly those utilizing artificial intelligence and machine learning, has the potential to improve the accuracy and reliability of neural signal interpretation, which will make neural machine interface technologies more intuitive and effective. These technologies have broad, impactful clinical applications, ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation. This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering, clinical surgery, and neuroengineering to develop more sophisticated and reliable interfaces. By addressing existing limitations and exploring new technological frontiers, neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation, promising enhanced mobility, independence, and quality of life for individuals with neurological impairments. By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles, researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users.

Key words: agonist–antagonist myoneural interface, biocompatibility, brain–machine interface, clinical anatomy, neural machine interface, neuroprosthetics, peripheral nerve interface, proprioception, targeted muscle reinnervation, targeted sensory reinnervation