中国神经再生研究(英文版) ›› 2021, Vol. 21 ›› Issue (5): 1926-1946.doi: 10.4103/NRR.NRR-D-24-01422

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

线粒体动力学功能障碍与神经发育障碍:从病理机制到临床转化的探索

  

  • 出版日期:2026-05-15 发布日期:2025-08-21

Mitochondrial dynamics dysfunction and neurodevelopmental disorders: From pathological mechanisms to clinical translation

Ziqi Yang1, 2, Yiran Luo1 , Zaiqi Yang1 , Zheng Liu2 , Meihua Li2 , Xiao Wu2 , Like Chen2, *, Wenqiang Xin2, *   

  1. 1 Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China;  2 Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
  • Online:2026-05-15 Published:2025-08-21
  • Contact: Like Chen, MD, ndyfy02726@ncu.edu.cn; Wenqiang Xin, PhD, ndyfy10339@ncu.edu.cn.

摘要:

线粒体功能障碍已成为自闭症谱系障碍、注意力缺陷/多动障碍和雷特综合征等各种神经发育障碍病因的关键因素。虽然这些疾病的临床表现各不相同,但它们的基本病理特征都可能源于线粒体动力学异常和自噬清除功能受损,从而导致神经元氧化还原失衡和氧化应激。此综述的目的是阐述线粒体动力学功能障碍与神经发育障碍的关系。线粒体是高度动态的细胞器,不断进行融合和分裂,以满足神经细胞的大量能量需求。当这些过程失调时(如在某些神经发育障碍中观察到的那样),受损的线粒体就会积聚,加剧氧化损伤并损害神经元功能。PTEN诱导的假定激酶1(PINK1)/ AE3泛素-蛋白连接酶(Parkin)通路是有丝分裂的关键,可选择性地清除功能失常的线粒体。在自闭症谱系障碍中已经发现了编码线粒体融合蛋白的基因突变,融合-裂变平衡的破坏与神经发育障碍有关。此外,雷特综合征的动物模型也表现出明显的有丝分裂缺陷,这进一步说明线粒体质量控制对于神经元健康是不可或缺的。临床研究强调了线粒体紊乱在神经发育障碍中的重要性。在自闭症谱系障碍中,氧化应激标志物升高和线粒体 DNA 缺失表明线粒体功能受到损害。多动症的认知缺陷与线粒体功能障碍和氧化应激有关。此外,来自雷特综合征患者的诱导多能干细胞模型显示线粒体动力学受损,更容易受到氧化损伤,突出了线粒体平衡缺陷在这些疾病中的作用。从转化的角度来看,针对线粒体通路的多种治疗方法显示出前景,旨在维持正常融合-裂变循环或增强有丝分裂吞噬功能的干预措施可以通过限制有缺陷线粒体的堆积来减少氧化损伤。通过药物调节线粒体的通透性和上调 PGC-1α--线粒体生物生成的重要调节因子--也可改善细胞的能量缺陷。识别线粒体损伤的早期生物标志物对精准医疗至关重要,它能让临床医生根据患者的个体情况采取相应的干预措施,改善预后。此外,将这些以线粒体为重点的策略与抗氧化剂或行为干预等既有疗法相结合,可能会提高治疗效果,改善临床预后。鉴于线粒体对神经元修复和可塑性的影响,利用这些途径可为再生策略开辟道路。总之,此综述强调线粒体稳态是神经发育病理生理学中一个统一的治疗轴心,线粒体动力学和自噬清除的破坏是与氧化应激交汇在一起的,研究者们应优先考虑在临床环境中验证这些干预措施,从而推进精准医学的发展,提高经发育障碍个体的治疗效果。

https://orcid.org/0000-0003-0231-6474 (Wenqiang Xin)

关键词: 自噬清除, 自闭症谱系障碍, 细胞稳态, 融合与分裂, 线粒体动力学, 有丝分裂, 神经再生, 神经元能量代谢, 神经发育障碍, 氧化应激

Abstract: Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders.

Key words: autophagic clearance, autism spectrum disorders, cellular homeostasis, fusion and fission, mitochondrial dynamics, mitophagy, neural regeneration, neuronal energy metabolism, neurodevelopmental disorders, oxidative stress