中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (6): 1284-1290.doi: 10.4103/1673-5374.385854

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

突触修剪过程中小胶质细胞介导巡视和吞噬作用的分子机制

  

  • 出版日期:2024-06-15 发布日期:2023-11-17
  • 基金资助:
    国家自然科学基金项目(32200778);江苏省自然科学基金项目(BK20220494);苏州市医疗卫生技术创新项目(SKY2022107);苏州大学附属第二医院神经疾病研究中心联合课题项目(ND2022A04和)

Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning

Anran Huo1, Jiali Wang1, Qi Li1, Mengqi Li1, Yuwan Qi1, Qiao Yin2, Weifeng Luo2, Jijun Shi2, Qifei Cong1, *   

  1. 1Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China; 2Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
  • Online:2024-06-15 Published:2023-11-17
  • Contact: Qifei Cong, PhD, qfcong@suda.edu.cn.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 32200778 (to QC); the Natural Science Foundation of Jiangsu Province, No. BK20220494 (to QC); Suzhou Medical and Health Technology Innovation Project, No. SKY2022107 (to QC); a grant from the Clinical Research Center of Neurological Disease in The Second Affiliated Hospital of Soochow University, Nos. ND2022A04 (to QC) and ND2023B06 (to JS). 

摘要:

除神经元外,小胶质细胞是能在大脑发育和神经回路的功能连接中发挥着重要作用主要细胞类型。研究表明,小胶质细胞对周围的环境起着动态监视的功能。一旦大脑改变其功能状态,小胶质细胞就会被募集到特定部位,继而发挥免疫功能,如释放细胞因子和吞噬细胞碎片。小胶质细胞在神经元、神经干细胞、内皮细胞、少突胶质细胞或星形胶质细胞之间的串扰可参与后者在突触修剪、神经发生、血管化、髓鞘形成和血脑屏障通透性方面的作用。此次综述主要关注神经元来源的“找我”、“吃我”和“别吃我”信号,以及这些信号驱动小胶质细胞对大脑发育过程中神经元变化做出的响应及应答,进而影响突触修剪过程。总之, 此次综述通过揭示神经元-小胶质细胞相互作用在突触修剪中的分子机制,为小胶质细胞在发育到疾病的突触修剪功能提供新的思路,同时为药物靶点发现和开发针对突触功能障碍的神经系统疾病治疗提供重要线索。

https://orcid.org/0000-0002-4446-7222 (Qifei Cong)

关键词: 小胶质细胞, 突触修剪, 突触形成, 突触消除, 突触重塑, 分子信号, 补体, 免疫信号

Abstract: Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits. In brain physiology, highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli. Once the brain switches its functional states, microglia are recruited to specific sites to exert their immune functions, including the release of cytokines and phagocytosis of cellular debris. The crosstalk of microglia between neurons, neural stem cells, endothelial cells, oligodendrocytes, and astrocytes contributes to their functions in synapse pruning, neurogenesis, vascularization, myelination, and blood-brain barrier permeability. In this review, we highlight the neuron-derived “find-me,” “eat-me,” and “don’t eat-me” molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development. This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease, thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction. 

Key words: complement, immune signals, microglia, molecular signal, synapse elimination, synapse formation, synapse refinement, synaptic pruning