中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (4): 887-894.doi: 10.4103/1673-5374.382252

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

缓释血管内皮生长因子A/碱性成纤维细胞生长因子纳米纤维膜可减轻氧糖剥夺诱导的神经血管单位损伤

  

  • 出版日期:2024-04-15 发布日期:2023-09-15

Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units#br#

Yifang Wu1, #, Jun Sun1, #, Qi Lin2, Dapeng Wang1, *, Jian Hai1, *   

  1. 1Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; 2Department of Pharmacy, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  • Online:2024-04-15 Published:2023-09-15
  • Contact: Dapeng Wang, MD, wdpboj@126.com; Jian Hai, MD, haijiandoct@zoho.com.cn.
  • Supported by:
    The study was supported by the National Natural Science Foundation of China, Nos. 81974207 (to JH), 82001383 (to DW); and the Special Clinical Research Project of Health Profession of Shanghai Municipal Health Commission, No. 20204Y0076 (to DW).

摘要:

脑缺血半暗带中上调的血管内皮生长因子A和碱性成纤维细胞生长因子能够增加血管体积,减少病变体积,增强神经细胞增殖和分化,从而发挥神经保护作用。但是内源性的血管内皮生长因子A和碱性成纤维细胞生长因子由于只是瞬时升高,其有益效果是有限且暂时的。为此实验采用逐层自组装和静电纺丝技术制备了不同层数的负载血管内皮生长因子A和碱性成纤维细胞生长因子的纳米纤维膜,其中10层的缓释血管内皮生长因子A/碱性成纤维细胞生长因子纳米纤维膜具有理想的超微结构,能高效且稳定地释放生长因子超过1个月。这种纳米纤维膜可促进脑微血管内皮细胞的成管和增殖能力,抑制神经元凋亡,上调紧密连接蛋白水平,并提高氧糖剥夺时神经血管单元各组分细胞的活性。这种纳米纤维膜还能降低氧糖剥夺后神经元中JAK2和STAT3磷酸化水平及促凋亡蛋白(Bax/Bcl-2和cleaved caspase-3)表达水平。因此,这种新型纳米纤维膜可通过抑制JAK2/STAT3通路对氧糖剥夺诱导的神经血管单元损伤发挥保护作用。

https://orcid.org/0000-0001-5213-4949 (Dapeng Wang); https://orcid.org/0000-0002-1609-5556 (Jian Hai)

关键词: 脑缺血, 脑微血管内皮细胞, 纳米纤维膜, 神经血管单位

Abstract: Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor (VEGFA/bFGF) expression in the penumbra of cerebral ischemia can increase vascular volume, reduce lesion volume, and enhance neural cell proliferation and differentiation, thereby exerting neuroprotective effects. However, the beneficial effects of endogenous VEGFA/bFGF are limited as their expression is only transiently increased. In this study, we generated multilayered nanofiber membranes loaded with VEGFA/bFGF using layer-by-layer self-assembly and electrospinning techniques. We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month. This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation, inhibited neuronal apoptosis, upregulated the expression of tight junction proteins, and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation. Furthermore, this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3 (JAK2/STAT3), Bax/Bcl-2, and cleaved caspase-3. Therefore, this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.

Key words: brain ischemia, brain microvascular endothelial cell, nanofiber membrane, neurovascular unit