中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (9): 2027-2035.doi: 10.4103/1673-5374.390952

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

人胎盘绒毛膜间充质干细胞移植修复新生儿缺氧缺血性脑病的神经损伤

  

  • 出版日期:2024-09-15 发布日期:2024-01-26
  • 基金资助:
    国家自然科学基金青年基金项目(82001604);贵州省高等教育科技创新团队项目([2023]072);贵州省杰出青年科技人才计划项目(YQK[2023]040);贵州省科学技术基金项目(黔科合基础-ZK[2021]一般368),遵义市创新人才队伍培养计划项目([2022]-2)

Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy

Lulu Xue1, 2, #, Ruolan Du3, #, Ning Bi4, Qiuxia Xiao3, Yifei Sun3, Ruize Niu4, Yaxin Tan6, Li Chen3, Jia Liu4, Tinghua Wang1, 2, 3, 4, *, Liulin Xiong1, 5, *   

  1. 1Transformation Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; 2State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China; 3Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; 4Department of Animal Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China; 5Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; 6Department of Pediatrics, the People’s Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
  • Online:2024-09-15 Published:2024-01-26
  • Contact: Liulin Xiong, PhD, 499465010@qq.com; Tinghua Wang, PhD, Wangth_email@163.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 82001604; Guizhou Provincial Higher Education Science and Technology Innovation Team, No. [2023]072; Guizhou Province Distinguished Young Scientific and Technological Talent Program, No. YQK[2023]040; Guizhou Provincial Basic Research Program (Natural Science), No. ZK[2021]-368 (all to LXiong), and Zunyi City Innovative Talent Team Training Plan, No. [2022]-2.

摘要:

新生儿缺氧缺血性脑病可导致脑瘫、神经感觉缺陷和认知障碍,目前对新生儿缺氧缺血性脑病的并发症尚无有效的治疗手段。既往研究已证实人胎盘来源的间充质干细胞对多种疾病具有治疗潜力。然而,人胎盘绒毛膜间充质干细胞可用于治疗新生儿缺氧缺血性脑病的可能性尚未得到证实。此次实验于新生儿缺氧缺血性脑病大鼠模型侧脑室注射人胎盘绒毛膜间充质干细胞,可见其认知和运动功能均显著恢复。进而以蛋白芯片筛选发现,新生儿缺氧缺血性脑病大鼠的白细胞介素3表达明显升高,而移植人胎盘绒毛膜来源的间充质干细胞后可降低白细胞介素3的表达。为进一步探索白细胞介素3在新生儿缺氧缺血性脑病中的作用,实验通过氧糖剥夺SH-SY5Y细胞构建了体外缺氧缺血模型,并通过小干扰RNA抑制白细胞介素3的表达,可见氧糖剥夺SH-SY5Y细胞的活性和增殖受到白细胞介素3敲低的进一步抑制。且敲低白细胞介素3也会加重缺氧缺血性脑病大鼠的神经元损伤以及认知和运动损伤。因此,人胎盘绒毛膜间充质干细胞移植可有效减轻缺氧缺血性脑病诱导的神经损伤,且这一作用与白细胞介素3介导的神经功能有关。

https://orcid.org/0000-0002-1623-5969 (Liulin Xiong); https://orcid.org/0000-0003-2012-8936 (Tinghua Wang)

关键词: 新生儿缺氧缺血性脑病, 人胎盘绒毛膜间充质干细胞, 神经损伤, 行为学, 蛋白芯片, 白细胞介素3, 小干扰RNA, SH-SY5Y细胞, 氧糖剥夺, 基因敲除

Abstract: Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy, neurosensory impairments, and cognitive deficits, and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy. The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored. However, the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated. In this study, we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function. Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats. Following transplantation of human placental chorionic plate-derived mesenchymal stem cells, interleukin-3 expression was downregulated. To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy, we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA. We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown. Furthermore, interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy. The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy, and this effect was mediated by interleukin-3-dependent neurological function.

Key words: behavioral evaluations, gene knockout, human neuroblastoma cells (SH-SY5Y), human placental chorionic derived mesenchymal stem cells, interleukin-3, neonatal hypoxic-ischemic encephalopathy, nerve injury, oxygen-glucose deprivation, protein chip, small interfering RNA