中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (8): 1781-1788.doi: 10.4103/1673-5374.386401

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

小鼠皮质神经胶质细胞直接转分化为神经元:双光子实时成像的证据

  

  • 出版日期:2024-08-15 发布日期:2024-01-03
  • 基金资助:
    国家自然科学基金项目(31970906);广东省自然科学基金项目(2020A1515011079);广东省重点技术研发计划项目(2018B030332001);广州市科技项目(202206060002);国家自然科学基金青年项目(32100793);珠江创新创业团队项目(2021ZT09Y552),暨南大学教育发展基金会刘艺良基金项目

Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex

Zongqin Xiang1, 2, 3, #, Shu He1, #, Rongjie Chen1, #, Shanggong Liu1, Minhui Liu4, Liang Xu1, Jiajun Zheng2, Zhouquan Jiang1, Long Ma1, Ying Sun1, Yongpeng Qin1, Yi Chen1, Wen Li1, *, Xiangyu Wang2, *, Gong Chen1, *, Wenliang Lei1, *   

  1. 1Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China; 2Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China; 3Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China; 4VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Region, Belgium
  • Online:2024-08-15 Published:2024-01-03
  • Contact: Wenliang Lei, PhD, leiwenliang@jnu.edu.cn; Gong Chen, PhD, gongchen@jnu.edu.cn; Xiangyu Wang, MD, wang_xy123@126.com; Wen Li, PhD, liwenhlb@163.com.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, No. 31970906 (to WLei); the Natural Science Foundation of Guangdong Province, No. 2020A1515011079 (to WLei); Key Technologies R&D Program of Guangdong Province, No. 2018B030332001 (to GC); Science and Technology Projects of Guangzhou, No. 202206060002 (to GC); the Youth Science Program of the National Natural Science Foundation of China, No. 32100793 (to ZX); the Pearl River Innovation and Entrepreneurship Team, No. 2021ZT09Y552; and Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation.

摘要:

在过去的10年间,越来越多的研究报道了基于转录因子的原位重编程,其可直接将内源性神经胶质细胞转分化为功能神经元,可作为成年哺乳动物中枢神经系统神经再生的替代疗法。然而,关于终末分化的神经胶质细胞如何在复杂的脑回路中转分化为精细的神经元,仍然存在诸多问题。并且事实上,最近有研究对星形细胞谱系追踪小鼠星形细胞转分化为神经元的研究结果存在疑问。此次实验使用双光子活体长时程成像连续捕捉小鼠皮质中增殖反应性星形胶质细胞和谱系追踪星形胶质细胞中神经转录因子NeuroD1异位表达后的原位星形胶质细胞到神经元的转换过程。延时成像可见,一个典型的具有多个锥形分支的星形胶质细胞逐渐分化成为一个具有长突起和动态生长锥的典型神经元的动态过程,其积极地探索周围环境,以寻找合适的投射靶点。同时发现,转化而来的神经元有长神经突和动态的生长锥,并可径向或切向迁移到合适的位置,进而证明了胶质细胞在转分化过程中具有迁移特性。此外,双光子钙成像和膜片钳记录证实新生成的神经元表现出同步钙信号、重复动作电位和自发突触反应,表明它们在局部神经回路中建立了功能性突触连接。这项研究提供了星形胶质细胞直接向神经转化的最直观证据,并明确表明,成年哺乳动物的大脑在神经再生和神经回路重建方面具有高度的可塑性。

https://orcid.org/0000-0002-7954-7214 (Wenliang Lei); https://orcid.org/0000-0002-1857-3670 (Gong Chen); https://orcid.org/0000-0001-5103-433X (Xiangyu Wang); https://orcid.org/0000-0002-4632-5754 (Wen Li)

关键词: 双光子成像, 钙离子成像, 谱系追踪小鼠, 星形细胞, 神经元, 转分化, 体内重编程, 直接谱系转分化, 胶质细胞, NeuroD1

Abstract: Over the past decade, a growing number of studies have reported transcription factor-based in situ reprogramming that can directly convert endogenous glial cells into functional neurons as an alternative approach for neuroregeneration in the adult mammalian central nervous system. However, many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry. In addition, concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tracing mice. In this study, we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ectopic expression of the neural transcription factor NeuroD1 in both proliferating reactive astrocytes and lineage-traced astrocytes in the mouse cortex. Time-lapse imaging over several weeks revealed the step-by-step transition from a typical astrocyte with numerous short, tapered branches to a typical neuron with a few long neurites and dynamic growth cones that actively explored the local environment. In addition, these lineage-converting cells were able to migrate radially or tangentially to relocate to suitable positions. Furthermore, two-photon Ca2+ imaging and patch-clamp recordings confirmed that the newly generated neurons exhibited synchronous calcium signals, repetitive action potentials, and spontaneous synaptic responses, suggesting that they had made functional synaptic connections within local neural circuits. In conclusion, we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuroregeneration and neural circuit reconstruction.

Key words: astrocyte-to-neuron conversion, Ca2+ imaging, direct lineage conversion, glia, astrocyte, in vivo reprogramming, lineage-tracing mice, NeuroD1, neuron, two-photon imaging