中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (12): 2588-2601.doi: 10.4103/NRR.NRR-D-23-01775

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

中枢神经系统疾病治疗的核心科学问题:新生神经元

  

  • 出版日期:2024-12-15 发布日期:2024-03-30
  • 基金资助:
    国家自然科学基金(82272171, 82271403, 31971279, 81941011, 31730030, 82201542) 

A core scientific problem in the treatment of central nervous system diseases: newborn neurons

Peng Hao1, Zhaoyang Yang1, *, Kwok-Fai So2, 3, 4, 5, 6, *, Xiaoguang Li1, 7, *   

  1. 1Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; 2Guangdong-HongKong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China; 3Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China; 4Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China; 5Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China; 6Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; 7Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
  • Online:2024-12-15 Published:2024-03-30
  • Contact: Kwok-Fai So, PhD, hrmaskf@hku.hk; Zhaoyang Yang, PhD, wack lily@163.com; Xiaoguang Li, PhD, lxgchina@sina.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, Nos. 82272171(to ZY), 82271403 (to XL), 31971279 (to ZY), 81941011 (to XL), 31730030 (to XL).

摘要:

中枢神经系统疾病之所以无法治愈,一方面是因为中枢神经系统结构复杂,另一方面是因为成人中枢神经系统神经元缺乏再生能力。因此,中枢神经系统疾病无法康复的根本原因在于神经元无法再生。过去几十年来,研究证实,包括人类在内的成人中枢神经系统中存在内源性神经元生成。这推翻了科学家们长期以来的共识--神经元的数量是恒定的,无法在成人中枢神经系统中产生新的神经元并自我更新。文章回顾了中枢神经系统损伤后内源性神经发生的变化及其调控机制,并探讨了针对内源性神经发生和新生神经元治疗中枢神经系统损伤的新策略。①中枢神经系统损伤通常伴随着内源性神经发生的改变,包括内源性神经干细胞的激活、增殖、异位迁移、分化和功能整合。②然而,受到局部恶劣微环境的影响,几乎所有被激活的神经干细胞都分化成了胶质细胞,而不是神经元。因此,损伤诱导的内源性神经发生反应不足以修复受损的神经功能。③科学家们已经尝试通过多种策略增强内源性神经发生,包括应用神经营养因子、生物活性材料和细胞重编程技术。④单独使用或联合使用这些治疗策略,有助于促进神经干细胞向损伤区域的定向迁移,确保其生存并分化为成熟的功能性神经元,并通过改善局部微环境促进其整合到神经电路中,以补充中枢神经系统损伤后失去的神经元。⑤通过调节内源性神经发生每个阶段,利用内源性神经干细胞促进新生神经元有效再生,为治疗中枢神经系统损伤提供了新的思路。

https://orcid.org/0000-0003-4039-4246 (Kwok-Fai So); https://orcid.org/0000-0001-8313-6998 (Zhaoyang Yang); 
https://orcid.org/0000-0003-4480-3676 (Xiaoguang Li)

关键词: 生物活性材料, 脑外伤, 内源性神经发生, 海马齿状回, 新生神经元, 神经营养因子, 神经干细胞, 脊髓损伤, 脑卒中, 室下区

Abstract: It has long been asserted that failure to recover from central nervous system diseases is due to the system’s intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans’. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.

Key words: bioactive materials, brain trauma, endogenous neurogenesis, hippocampal dentate gyrus, neural stem cells, neurotrophic factors, newborn neurons, spinal cord injury, stroke, subventricular zone