中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (10): 2240-2248.doi: 10.4103/1673-5374.390957

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

在缺血性脑卒中小鼠模型中敲低多聚嘧啶区结合蛋白1可将星形胶质细胞原位重编程为神经元

  

  • 出版日期:2024-10-15 发布日期:2024-01-29
  • 基金资助:
    国家自然科学基金项目(82071418);福建省自然科学基金项目(2020J01612)

In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke

Meng Yuan1, 2, Yao Tang1, 3, Tianwen Huang4, 5, Lining Ke1, 2, *, En Huang1, 3, *   

  1. 1Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China; 2Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China; 3Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China; 4Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China; 5Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian Province, China
  • Online:2024-10-15 Published:2024-01-29
  • Contact: En Huang, MD, PhD, ehuang0705@fjmu.edu.cn; Lining Ke, MD, PhD, ke-lining@fjmu.edu.cn.
  • Supported by:
    This study was supported by the National Natural Science Foundation of China, No. 82071418 and the Natural Science Foundation of Fujian Province, No. 2020J01612 (both to EH).

摘要:

原位直接重编程技术可在体内将内源性神经胶质细胞直接转化为功能性神经元,以用于修复损伤的中枢神经系统。有研究发现聚嘧啶束结合蛋白1敲低可使星形胶质细胞原位重编程为功能神经元,但也有研究认为这是腺病毒相关病毒转染的胶质纤维酸性蛋白在神经元中的漏表达造成的假象。因此,此次实验在内皮素1诱导的缺血性脑卒中小鼠模型中,以AAV-PHP. eB-GFAP-shPTB敲低聚嘧啶束结合蛋白1,以观察GFAP-shPTB介导的神经元原位直接重编程对脑卒中的影响。结果显示,在脑卒中小鼠模型中,敲低聚嘧啶束结合蛋白1可有效将胶质纤维酸性蛋白阳性细胞重编程为缺血灶中的神经元,并可恢复神经组织结构,减轻炎症反应,恢复行为功能。这一研究验证了星形胶质细胞原位转分化的有效性,为脑卒中的治疗带来了希望。

https://orcid.org/0000-0002-3393-4497 (En Huang); https://orcid.org/0009-0009-9251-3439 (Lining Ke)

关键词: 多聚嘧啶区结合蛋白1, miR-30, shRNA, 原位直接重编程, 星形胶质细胞, 神经元, 转分化, 缺血性脑卒中

Abstract: In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1 (PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.eB-GFAP-shPTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-shPTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.

Key words: astrocyte, in situ direct reprogramming, ischemic stroke, miR-30 based shRNA, neuron, polypyrimidine tract-binding protein 1, transdifferentiation